DOI QR코드

DOI QR Code

Isolation of an Invertebrate-type Lysozyme from the Body Wall of Spoon Worm, Urechis unicinctus

개불의 체벽으로부터 i-type 라이소자임의 정제

  • Oh, Hye Young (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University) ;
  • Park, Nam Gyu (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University)
  • 오혜영 (부경대학교 수산과학대학 생물공학과) ;
  • 박남규 (부경대학교 수산과학대학 생물공학과)
  • Received : 2018.01.09
  • Accepted : 2018.03.12
  • Published : 2018.03.30

Abstract

Lysozymes are innate immune factors that play a critical role in the defense against pathogens in various invertebrate animals including spoon worms. In this study, an invertebrate-type lysozyme was isolated from the body wall of spoon worm, Urechis unicinctus. The acidified body wall extract was partially separated using a Sep-Pak C18 cartridge. Among the fractions, the materials that were eluted with 60% methanol/0.1% trifluoroacetic acid showed the most potent antimicrobial activity against Bacillus subtilis KCTC 1021. A series of high performance liquid chromatography (HPLC) steps were then utilized to isolate a single antimicrobial absorbance peak. The molecular weight of the antimicrobial peak was approximated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which was approximately 13 to 14 kDa. The partial primary structure of this antimicrobial protein that was analyzed, using LC-MS/MS, was CTGGRPPTCEDYAK (1611.69 Da). Homology search of these fourteen residues, using the National Center for Biotechnology Information Basic Local Alignment Search Tool (NCBI BLAST), revealed that the isolated protein was similar to the invertebrate-type lysozymes described in other animals. Then, the antimicrobial and lysozyme enzymatic (muramidase) activities of this protein were assessed. The isolated protein possessed antimicrobial activity and potent muramidase activity, which were comparable to those of hen egg white lysozyme. Therefore, the isolated protein was designated as Urechis unicinctus invertebrate-type lysozyme from the body wall, Uu-iLysb.

라이소자임은 선천성 면역 물질로 개불을 포함하는 여러 무척추동물의 병원균에 대한 방어에 주요하게 작용한다. 본 논문은 개불(Urechis unicinctus)의 체벽 조직 추출물로부터 무척추형 라이소자임의 정제와 그 특성에 관한 분석을 기술하고 있다. 체벽 추출물은 우선적으로 Sep-Pak C18 cartridge를 사용하여 부분적으로 분리되었으며, 분리된 분획 중 60% 메탄올에 용출된 분획이 Bacillus subtilis KCTC 1021에서 강한 항균활성을 나타내었다. 그 후 여러 단계의 역상과 이온교환 고속액체크로마토그래피(High Performance Liquid Chromatography, HPLC)를 사용하여 항균성 물질이 정제되었으며, 분자량은 약 14 kDa이었다. 이 단백질의 일차서열은 LC-MS/MS를 통해 분석되었으며, 얻은 부분적 아미노산 서열을 NCBI BLAST를 통하여 분석해 본 결과, 이 항균성 물질은 다른 동물들로부터 동정된 무척추동물형 라이소자임(invertebrate-type lysozyme)의 서열과 유사도를 가지고 있어, 체벽으로부터 정제된 개불 라이소자임(Urechis unicinctus invertebrate-type lysozyme from body wall, Uu-iLysb)으로 명명하였다. 개불 라이소자임의 활성을 확인하기 위하여 항균활성 및 라이소자임 효소 활성실험을 진행한 결과, 개불 라이소자임이 항균활성과 라이소자임 효소활성 모두 강하게 가지고 있는 것을 확인하였다.

Keywords

References

  1. Bachali, S., Jager, M., Hassanin, A., Schoentgen, F., Jolles, P., Fiala-Medioni, A. and Deutsch, J. S. 2002. Phylogenetic Analysis of Invertebrate Lysozymes and the Evolution of Lysozyme Function. J. Mol. Evol. 54, 652-664.
  2. Beutler, B. 2004. Innate immunity: an overview. Mol. Immunol. 40, 845-59. https://doi.org/10.1016/j.molimm.2003.10.005
  3. Brusca, R. C. and Brusca, G. J. 2003. Invertebrates, Sinauer Associates.
  4. Callewaert, L. and Michiels, C. W. 2010. Lysozymes in the animal kingdom. J. Biosci. 35, 127-160. https://doi.org/10.1007/s12038-010-0015-5
  5. Christopher, J. O. and David, J. 2002. Burrow irrigation behavior of Urechis caupo, a filter-feeding marine invertebrate, in its natural habitat. Mar. Ecol. Prog. Ser. 245, 149-155. https://doi.org/10.3354/meps245149
  6. Cong, L., Yang, X., Wang, X., Tada, M., Lu, M., Liu, H. and Zhu, B. 2009. Characterization of an i-type lysozyme gene from the sea cucumber Stichopus japonicus, and enzymatic and nonenzymatic antimicrobial activities of its recombinant protein. J. Biosci. Bioeng. 107, 583-588. https://doi.org/10.1016/j.jbiosc.2009.01.016
  7. Fradkov, A., Berezhnoy, S., Barsova, E., Zavalova, L., Lukyanov, S., Baskova, I. and Sverdlov, E. D. 1996. Enzyme from the medicinal leech (Hirudo medicinalis) that specifically splits endo-$\varepsilon$ (-$\gamma$-Glu)-Lys isopeptide bonds: cDNA cloning and protein primary structure. FEBS Lett. 390, 145-148. https://doi.org/10.1016/0014-5793(96)00644-8
  8. Ito, Y., Yoshikawa, A., Hotani, T., Fukuda, S., Sugimura, K. and Imoto, T. 1999. Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family. Eur. J. Biochem. 259, 456-461. https://doi.org/10.1046/j.1432-1327.1999.00064.x
  9. Itoh, N. and Takahashi, K. G. 2007. cDNA cloning and in situ hybridization of a novel lysozyme in the Pacific oyster, Crassostrea gigas. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 148, 160-166. https://doi.org/10.1016/j.cbpb.2007.05.005
  10. Jain, R., Sonawane, S. and Mandrekar, N. 2008. Marine organisms: Potential source for drug discovery.
  11. Jha, R. K. and Zi-rong, XZ. 2004. Biomedical compounds from marine organisms. Mar. Drugs 2, 123-146. https://doi.org/10.3390/md203123
  12. Joskova, R., Silerova, M., Prochazkova, P. and Bilej, M. 2009. Identification and cloning of an invertebrate-type lysozyme from Eisenia andrei. Dev. Comp. Immunol. 33, 932-938. https://doi.org/10.1016/j.dci.2009.03.002
  13. McHenery, J. G., Birkbeck, T. H. and Allen, J. A. 1979. The occurrence of lysozyme in marine bivalves. Comp. Biochem. Physiol. B, Comp. Biochem. 63, 25-28.
  14. Montaser, R. and Luesch, H. 2011. Marine natural products: a new wave of drugs? Future Med. Chem. 3, 1475-1489. https://doi.org/10.4155/fmc.11.118
  15. Munro, M. H. G., Blunt, J. W., Dumdei, E. J., Hickford, S. J. H., Lill, R. E., Li, S., Battershill, C. N. and Duckworth, A. R. 1999. The discovery and development of marine compounds with pharmaceutical potential. J. Biotechnol. 70, 15-25. https://doi.org/10.1016/S0168-1656(99)00052-8
  16. Niu, R. and Chen, X. 2016. Full-Length cDNA, Prokaryotic Expression, and Antimicrobial Activity of UuHb-F-I from Urechis unicinctus. Biomed. Res. Int. 2016, doi:10.1155/2016/ 5683026.
  17. Paskewitz, S. M., Li, B. and Kajla, M. K. 2008. Cloning and molecular characterization of two invertebrate-type lysozymes from Anopheles gambiae. Insect Mol. Biol. 17, 217-225.
  18. Putnam, N. H., Butts, T., Ferrier, D. E. K., Furlong, R. F., Hellsten, U., Kawashima, T., Robinson-Rechavi, M., Shoguchi, E., Terry, A., Yu, J. K., Benito-Gutierrez, E., Dubchak, I., Garcia-Fernandez, J., Gibson-Brown, J. J., Grigoriev, I. V., Horton, A. C., de Jong, P. J., Jurka, J., Kapitonov, V. V., Kohara, Y., Kuroki, Y., Lindquist, E., Lucas, S., Osoegawa, K., Pennacchio, L. A., Salamov, A. A., Satou, Y., Sauka- Spengler, T., Schmutz, J., Shin, I, T., Toyoda, A., Bronner- Fraser, M., Fujiyama, A., Holland, L. Z., Holland, P. W. H., Satoh, N. and Rokhsar, D. S. 2008. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064-1071. https://doi.org/10.1038/nature06967
  19. Ruppert, E. E., Fox, R. S. and Barnes, R. D., 2004. Invertebrate Zoology: A Functional Evolutionary Approach, Thomson-Brooks/Cole.
  20. Saurabh, S. and Sahoo, P. 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquacult. Res. 39, 223-239. https://doi.org/10.1111/j.1365-2109.2007.01883.x
  21. Schulenburg, H. and Boehnisch, C. 2008. Diversification and adaptive sequence evolution of Caenorhabditis lysozymes (Nematoda: Rhabditidae). BMC Evol. Biol. 8, 114. https://doi.org/10.1186/1471-2148-8-114
  22. Seo, J. K., Crawford, J. M., Stone, K. L. and Noga, E. J. 2005. Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica. Biochem. Biophys. Res. Commun. 338, 1998-2004. https://doi.org/10.1016/j.bbrc.2005.11.013
  23. Sung, W. S., Park, S. H. and Lee, D. G. 2008. Antimicrobial effect and membrane‐active mechanism of Urechistachykinins, neuropeptides derived from Urechis unicinctus. FEBS Lett. 582, 2463-2466. https://doi.org/10.1016/j.febslet.2008.06.015
  24. Takeshita, K., Hashimoto, Y., Ueda, T. and Imoto, T. 2003. A small chimerically bifunctional monomeric protein: Tapes japonica lysozyme. Cell. Mol. Life Sci. 60, 1944-1951. https://doi.org/10.1007/s00018-003-3082-z
  25. Xue, Q. G., Itoh, N., Schey, K. L., Li, Y. L., Cooper, R. K. and La Peyre, J. F. 2007. A new lysozyme from the eastern oyster (Crassostrea virginica) indicates adaptive evolution of i-type lysozymes. Cell. Mol. Life Sci. 64, 82-95. https://doi.org/10.1007/s00018-006-6386-y
  26. Zavalova, L., Baskova, I., Lukyanov, S., Sass, A., Snezhkov, E., Akopov, S., Artamonova, I., Archipova, V., Nesmeyanov, V. and Kozlov, D. 2000. Destabilase from the medicinal leech is a representative of a novel family of lysozymes. Biochim. Biophys. Acta. Protein Struct. Mol. Enzymol. 1478, 69-77. https://doi.org/10.1016/S0167-4838(00)00006-6
  27. Zhang, H. W., Sun, C., Sun, S. S., Zhao, X. F. and Wang, J. X. 2010. Functional analysis of two invertebrate-type lysozymes from red swamp crayfish, Procambarus clarkii. Fish Shellfish Immunol. 29, 1066-1072. https://doi.org/10.1016/j.fsi.2010.08.023