DOI QR코드

DOI QR Code

열처리와 복합구조화를 통한 디스플레이용 기능성 고분자 필름의 내구성 향상 연구

Durability Improvement of Functional Polymer Film by Heat Treatment and Micro/nano Hierarchical Structure for Display Applications

  • 여나은 (부산대학교 인지메카트로닉스공학과) ;
  • 조원경 (부산대학교 인지메카트로닉스공학과) ;
  • 김두인 (부산대학교 광메카트로닉스연구소) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과)
  • Yeo, N.E. (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Cho, W.K. (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, D.I. (Opto-mechatronics Research Institute, Pusan National University) ;
  • Jeong, M.Y. (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 투고 : 2018.08.28
  • 심사 : 2018.10.20
  • 발행 : 2018.12.31

초록

본 연구에서는 디스플레이에 적용되는 기능성 고분자 필름의 나노구조에 의한 기계적 물성 저하 문제를 해결하기 위해 열처리 방법과 멀티스케일 계층구조를 통한 PMMA(Poly(methyl-methacrylate)) 필름의 내구성 향상에 대해 연구하였다. PMMA 필름의 기계적 특성을 향상시키기 위한 열처리 공정은 고온/고압의 자유제적 제어공정과 고온 공정 후 급속히 냉각시키는 공정으로 구성되어 있으며, 열 나노임프린트를 이용하여 스크래치로부터 나노구조를 보호하기 위한 멀티스케일 계층구조를 형성하였다. 연필경도 시험에 의해 발생한 미세구조의 손상에 대한 평가를 위해 표면 형상 변화와 기능성 변화를 평가하였으며, 이를 통하여 열처리와 멀티스케일 계층구조가 스크래치에 의한 정접촉각 감소와 투과율 손실 저감에 효과적임을 확인하였다.

In this study, the effects of the heat treatment and multi-scale hierarchical structures on the durability of the nano-patterned functional PMMA(Poly(methyl-methacrylate)) film was evaluated. The heat treatments that consisted of high-pressure/high-temperature flat pressing and rapid cooling process were employed to improve mechanical property of the PMMA films. Multi-scale hierarchical structures were fabricated by thermal nanoimprint to protect nano-scale structures from the scratch. Examination on surface structures and functionalities such as wetting angle and transmittance revealed that the preopposed heat treatment and multi-scale hierarchical structures are effective to minimize surface damages.

키워드

MOKRBW_2018_v25n4_47_f0001.png 이미지

Fig. 1. Schematic of residual stresses generated by rapid cooling on PMMA film.

MOKRBW_2018_v25n4_47_f0002.png 이미지

Fig. 2. Schematic of overall process of fabrication using nanoimprint lithography and sequence of heat-treatments. (a) flat pressing and rapid cooling processes (b) thermal nanoimprint lithography for nano-cone fabrication, and (c) thermal nanoimprint lithography for multi-scale hierarchical structure.

MOKRBW_2018_v25n4_47_f0003.png 이미지

Fig. 3. SEM images of imprinted films. Top view (a) and side view (b) of the nanostructure. Top view (c) and side view (d) of the multi-scale hierarchical structure.

MOKRBW_2018_v25n4_47_f0004.png 이미지

Fig. 4. SEM images on scratch of imprinted films. (a) the nano-structure, (b) the multiscale hierarchical structure.

MOKRBW_2018_v25n4_47_f0005.png 이미지

Fig. 5. Static contact angle of imprinted films before and after scratching.

MOKRBW_2018_v25n4_47_f0006.png 이미지

Fig. 6. Transmittance loss and amount of decreased transmittance on scratch of imprinted films.

참고문헌

  1. A. R. Parker, and H. E. Townley. "Biomimetics of photonic nanostructures", Nature Nanotechnology, 2(6), 347 (2007). https://doi.org/10.1038/nnano.2007.152
  2. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, and L. Jiang, "Super-hydrophobic surfaces: from natural to artificial", Advanced Materials, 14(24), 1857 (2002). https://doi.org/10.1002/adma.200290020
  3. W. K. Cho, S. U. Cho, D. I. Kim, D. U. Kim, and M. Y. Jeong, "Effects of Static Contact Angle and Roughness on Rolling Resistance of Droplet", J. Microelectron. Packag. Soc., 23(1), 23 (2016). https://doi.org/10.6117/kmeps.2016.23.1.023
  4. X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, and B. Yang, "The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography", Advanced Materials, 19(17), 2213 (2007). https://doi.org/10.1002/adma.200601946
  5. C. Ting, M. Huang, H. Tsai, C. Chou, and C. Fu, "Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology", Nanotechnology, 19, 205301 (2008). https://doi.org/10.1088/0957-4484/19/20/205301
  6. L. J. Guo, "Nanoimprint lithography: methods and material requirements", Adv. Mater., 19, 495 (2007). https://doi.org/10.1002/adma.200600882
  7. M. H. Kwon, and H. Lee, "Fabrication of Functional ZnO Nano-particles Dispersion Resin Pattern Through Thermal Imprinting Process", Journal of the Korean Society for Precision Engineering, 28(12), 1419 (2011).
  8. N. Tohge, A. Matsuda, T. Minami, Y. Matsuno, S. Katayama, and Y. Ikeda, "Fine-patterning on glass substrates by the solgel method", Journal of non-crystalline solids, 100(1), 501 (1988). https://doi.org/10.1016/0022-3093(88)90071-3
  9. E. Farm, M. Kemell, M. Ritala, and M. Leskela, "Selectivearea atomic layer deposition using poly (methyl methacrylate) films as mask layers", The Journal of Physical Chemistry C, 112(40), 15791 (2008). https://doi.org/10.1021/jp803872s
  10. S. Dhuey, C. Peroz, D. Olynick, G. Calafiore, and S. Cabrini, "Obtaining nanoimprint template gratings with 10 nm halfpitch by atomic layer deposition enabled spacer double patterning", Nanotechnology, 24(10), 105303 (2013). https://doi.org/10.1088/0957-4484/24/10/105303
  11. S. O. Cho, and H. Y. Jun, "Surface hardening of poly (methyl methacrylate) by electron irradiation", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 237(3), 525 (2005). https://doi.org/10.1016/j.nimb.2005.03.007
  12. L. J. Broutman, and S. M. Krishnakumar, "Impact strength of polymers: 1. The effect of thermal treatment and residual stress", Polymer Engineering & Science, 16, 74 (1976). https://doi.org/10.1002/pen.760160203
  13. N. E. Yeo, W. K. Cho, D.-I. Kim, and M. Y. Jeong, "A Study on Enhanced of Anti-scratch performance of Nanostructured Polymer Surface", J. Microelectron. Packag. Soc., 24(3), 41 (2017). https://doi.org/10.6117/KMEPS.2017.24.3.041
  14. N. E. Yeo, W. K. Cho, D.-I. Kim, and M. Y. Jeong, "Enhanced anti-scratch performance of nanopatterned anti-reflective polymer films", Applied Surface Science, 458, 503 (2018). https://doi.org/10.1016/j.apsusc.2018.07.086
  15. L. C. E. Struik, "Orientation effects and cooling stresses in amorphous polymers", Polymer Engineering & Science, 18(10), 799 (1978). https://doi.org/10.1002/pen.760181011
  16. K. Hagiwara, T. Ougizawa, T. Inoue, K. Hirata, and Y. Kobayashi, "Studies on the free volume and the volume expansion behavior of amorphous polymers", Radiation Physics and Chemistry, 58(5), 525 (2000). https://doi.org/10.1016/S0969-806X(00)00211-5
  17. A. Siegmann, M. Narkis, and N. Rosenzweig, "Softening temperature of glassy polymers as affected by residual stresses", Polymer Engineering & Science, 19(3), 223 (1979). https://doi.org/10.1002/pen.760190310
  18. B. Farshchian, S. M. Hurst, J. Lee, and S. Park, "3D molding of hierarchical micro-and nanostructures", Journal of Micromechanics and Microengineering, 21(3), 035016 (2011). https://doi.org/10.1088/0960-1317/21/3/035016

피인용 문헌

  1. IPL 처리를 통한 고분자 나노구조의 기계적 특성 향상 연구 vol.27, pp.4, 2018, https://doi.org/10.6117/kmeps.2020.27.4.113