Fig. 1. Concept for synthesis of core-shell PS-PDMS nanoparticle powder using an immersion annealing system. (a) Schematic diagram of immersion annealing system (top) and vacuum filtration system (bottom) for core-shell nanoparticle powder. (b) Illustration of core-shell structure at different states (thin film and bulk powder) of BCP before RIE process.
Fig. 2. Morphology transition of sphere-forming BCP by using immersion annealing system. (a) Schematic diagram of immersion annealing (IA) system for thin film BCP. (b) Morphology transition from solid sphere (left) to core-shell structure (right) by using IA.
Fig. 3. Morphology transition of BCP nanoparticles by using IA. (a) Solid SiOx nanoparticle of untreated SD51 BCP after RIE process. (b) TEM image of untreated SD51 nanoparticle after RIE process. (c) Core-shell sphere structure of SD51 BCP nanoparticle annealed with ethanol/heptane solvent mixture. (d) TEM image of core-shell nanoparticle structures after RIE process.
Fig. 4. Worm-like core-shell structure of sphere-forming BCP derived from the core-shell nanoparticle structure at high VHep/VEth ratio of 0.25.
참고문헌
- L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, "Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss", J. Phys. Chem. B, 106(4), 853 (2002). https://doi.org/10.1021/jp013638l
- P. V. Kamat, "Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles", J. Phys. Chem. B, 106(32), 7729 (2002). https://doi.org/10.1021/jp0209289
- L. N. J. C. R. Lewis, "Chemical catalysis by colloids and clusters", Chem. Rev., 93(8), 2693 (1993). https://doi.org/10.1021/cr00024a006
- S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. J. A. m. Atwater, "Plasmonics-a route to nanoscale optical devices", Adv. Mater., 13(19), 1501 (2001). https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
- S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, "Submicrometer Metallic Barcodes", Science, 294 (5540), 137 (2001). https://doi.org/10.1126/science.294.5540.137
- Y. S. Ahn, W. Kim, H. Oh, K. Park, K. Kim, and S.-H. Choa, "Characteristics of Flexible Transparent Capacitive Pressure Sensor Using Silver Nanowire/PEDOT:PSS Hybrid Film (in Korean)", J. Microelectron. Packag. Soc., 23(3), 21 (2016). https://doi.org/10.6117/kmeps.2016.23.3.021
- J. S. Kang, J. H. Kim, and M. Y. Jeong, "A Study on the Silver Nanoparticle Deposition for Optical Amplification (in Korean)", J. Microelectron. Packag. Soc., 25(1), 11 (2018). https://doi.org/10.6117/KMEPS.2018.25.1.011
- A. Guerrero-Martinez, J. Perez-Juste, and L. M. Liz-Marzan, "Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials", Adv. Mater., 22(11), 1182 (2010). https://doi.org/10.1002/adma.200901263
- F. Hoffmann, M. Cornelius, J. Morell, and M. Froba, "Silica-Based Mesoporous Organic-Inorganic Hybrid Materials", Angew. Chem., Int. Ed. Engl., 45(20), 3216 (2006). https://doi.org/10.1002/anie.200503075
- F. Marlow, M. P. Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, "Opals: Status and Prospects", Angew. Chem., Int. Ed., 48(34), 6212 (2009). https://doi.org/10.1002/anie.200900210
- I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Lin, "Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications", Adv. Funct. Mater., 17(8), 1225 (2007). https://doi.org/10.1002/adfm.200601191
- H. Zou, S. Wu, and J. Shen, "Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications", Chem. Rev., 108(9), 3893 (2008). https://doi.org/10.1021/cr068035q
- C. S. Stan, M. S. Secula, and D. Sibiescu, "Highly luminescent polystyrene embedded CdSe quantum dots obtained through a modified colloidal synthesis route", Electron. Mater. Lett., 8(3), 275 (2012). https://doi.org/10.1007/s13391-012-1108-0
- D. Thomas, K. Sreelakshmi, K. Manu, and M. Sebastian, "Polystyrene-Silver composites for embedded capacitor applications," in Applied Electromagnetics Conference (AEMC), 2011 IEEE, 1, (2011).
- C. Sanchez, B. Julian, P. Belleville, and M. Popall, "Applications of hybrid organic-inorganic nanocomposites", J. Mater. Chem., 15(35-36), 3559 (2005). https://doi.org/10.1039/b509097k
- J. F. Chen, H. M. Ding, J. X. Wang, and L. Shao, "Preparation and characterization of porous hollow silica nanoparticles for drug delivery application", Biomaterials, 25(4), 723 (2004). https://doi.org/10.1016/S0142-9612(03)00566-0
- A. Liberman, N. Mendez, W. C. Trogler, and A. C. Kummel, "Synthesis and surface functionalization of silica nanoparticles for nanomedicine", Surf. Sci. Rep., 69(2-3), 132 (2014). https://doi.org/10.1016/j.surfrep.2014.07.001
- X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, and S. J. s. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics", Science, 307(5709), 538 (2005). https://doi.org/10.1126/science.1104274
- X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. J. N. b. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots", Nat. Biotechnol., 21(1), 41 (2003). https://doi.org/10.1038/nbt764
- Y. Kim, B. Hwang, S. Song, B. Ree, Y. Kim, S. Cho, K. Heo, Y. Kwon, and M. Ree, "Well-defined hollow nanochanneledsilica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders", Nanoscale, 7(35), 14774 (2015). https://doi.org/10.1039/C5NR03800F
- H. Li, C. S. Ha, and I. Kim, "Facile Fabrication of Hollow Silica and Titania Microspheres Using Plasma-Treated Polystyrene Spheres as Sacrificial Templates", Langmuir, 24(19), 10552 (2008). https://doi.org/10.1021/la801686z
- L. I. C. Sandberg, T. Gao, B. P. Jelle, A. J. A. i. M. S. Gustavsen, and Engineering, "Synthesis of hollow silica nanospheres by sacrificial polystyrene templates for thermal insulation applications", Adv. Mater. Sci. Eng., 2013, 6 (2013).
-
Y. C. Hong, J. H. Kim, S. C. Cho, and H. S. Uhm, "ZnO nanocrystals synthesized by evaporation of Zn in microwave plasma torch in terms of mixture ratio of
$N_2$ to$O_2$ ", Phys. Plasmas, 13(6), 063506 (2006). https://doi.org/10.1063/1.2211107 - X. L. Hu, Y. J. Zhu, and S. W. Wang, "Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods", Mater. Chem. Phys., 88(2-3), 421 (2004). https://doi.org/10.1016/j.matchemphys.2004.08.010
- X. Zheng, Y. Xie, L. Zhu, X. Jiang, and A. Yan, "Formation of vesicle-templated CdSe hollow spheres in an ultrasoundinduced anionic surfactant solution", Ultrason. Sonochem., 9(6), 311 (2002). https://doi.org/10.1016/S1350-4177(02)00086-X
- W. I. Park, J. M. Kim, J. W. Jeong, and Y. S. Jung, "Deep-Nanoscale Pattern Engineering by Immersion-Induced Self-Assembly", ACS Nano, 8(10), 10009 (2014). https://doi.org/10.1021/nn504995c