DOI QR코드

DOI QR Code

담금 어닐링을 이용한 유·무기 코어-쉘 나노입자 파우더 합성법

Synthesis of Organic-inorganic Core-shell Nanoparticle Powder using Immersion Annealing Process

  • 최영중 (한국세라믹기술원 전자융합소재본부) ;
  • 정현성 (한국세라믹기술원 전자융합소재본부) ;
  • 방지원 (한국세라믹기술원 전자융합소재본부) ;
  • 박운익 (한국세라믹기술원 전자융합소재본부)
  • Choi, Young Joong (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Jung, Hyunsung (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Bang, Jiwon (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Park, Woon Ik (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET))
  • 투고 : 2018.11.16
  • 심사 : 2018.12.13
  • 발행 : 2018.12.31

초록

다양한 디바이스 응용분야에 블록공중합체가 사용되기 위해, 블록공중합체의 형상을 제어하기 위한 간단하면서도 실용적인 합성방법이 필요하다. 하지만 콜로이드성의 형판을 사용하는 기존의 방식은 공정이 복합하고 비용이 많이 발생하여, 고순도의 코어-쉘 나노입자를 대량생산하기에 적합하지 않다. 본 논문에서 PS-b-PDMS 블록공중합체를 담금어닐링하여, 20 nm 이하크기를 가지는 PS가 봉입된 코어-쉘 구조의 $SiO_x$나노입자를 합성하였다. 또한, 어닐링 공정에 사용되는 헵테인과 에탄올의 혼합비율이 자기조립된 PS-b-PDMS 블록공중합체 나노입자의 형상에 어떠한 영향을 미치는지 분석하였으며, 최적의 담금어닐링 조건에서 나노입자가 worm-like구조로 변화하는 것을 확인하였다. 이러한 파우더 합성법은 다른 용매기반의 블록공중합체 합성방법에 응용이 가능할 것으로 생각되며, 새로운 가이드라인을 제공할 것으로 예상된다.

Simple and useful synthetic process to control the morphology of block copolymers (BCPs) is required for implementation in various device applications. However, the conventional method to use colloidal templates is not enough to realize the production of pure and massive core-shell nanoparticles due to the cost-intensive complex process. Here, we introduce a novel and facile synthesis method to realize the formation of core-shell $SiO_x$ nanoparticle power by employing an immersion annealing of a sphere-forming poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) BCP. We successfully obtained a PS-encapsulated $SiO_x$ nanoparticle with a diameter of ~20 nm. In addition, we analyzed how the mixing ratio of heptane/ethanol affects the BCP morphology of self-assembled PS-b-PDMS nanoparticles, showing a worm-like structure under the optimum immersion conditions. This useful approach is expected to be extendable to other solvent-based BCP synthesis, providing a new guideline for unique BCP production.

키워드

MOKRBW_2018_v25n4_35_f0001.png 이미지

Fig. 1. Concept for synthesis of core-shell PS-PDMS nanoparticle powder using an immersion annealing system. (a) Schematic diagram of immersion annealing system (top) and vacuum filtration system (bottom) for core-shell nanoparticle powder. (b) Illustration of core-shell structure at different states (thin film and bulk powder) of BCP before RIE process.

MOKRBW_2018_v25n4_35_f0002.png 이미지

Fig. 2. Morphology transition of sphere-forming BCP by using immersion annealing system. (a) Schematic diagram of immersion annealing (IA) system for thin film BCP. (b) Morphology transition from solid sphere (left) to core-shell structure (right) by using IA.

MOKRBW_2018_v25n4_35_f0003.png 이미지

Fig. 3. Morphology transition of BCP nanoparticles by using IA. (a) Solid SiOx nanoparticle of untreated SD51 BCP after RIE process. (b) TEM image of untreated SD51 nanoparticle after RIE process. (c) Core-shell sphere structure of SD51 BCP nanoparticle annealed with ethanol/heptane solvent mixture. (d) TEM image of core-shell nanoparticle structures after RIE process.

MOKRBW_2018_v25n4_35_f0004.png 이미지

Fig. 4. Worm-like core-shell structure of sphere-forming BCP derived from the core-shell nanoparticle structure at high VHep/VEth ratio of 0.25.

참고문헌

  1. L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, "Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss", J. Phys. Chem. B, 106(4), 853 (2002). https://doi.org/10.1021/jp013638l
  2. P. V. Kamat, "Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles", J. Phys. Chem. B, 106(32), 7729 (2002). https://doi.org/10.1021/jp0209289
  3. L. N. J. C. R. Lewis, "Chemical catalysis by colloids and clusters", Chem. Rev., 93(8), 2693 (1993). https://doi.org/10.1021/cr00024a006
  4. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. J. A. m. Atwater, "Plasmonics-a route to nanoscale optical devices", Adv. Mater., 13(19), 1501 (2001). https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
  5. S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, "Submicrometer Metallic Barcodes", Science, 294 (5540), 137 (2001). https://doi.org/10.1126/science.294.5540.137
  6. Y. S. Ahn, W. Kim, H. Oh, K. Park, K. Kim, and S.-H. Choa, "Characteristics of Flexible Transparent Capacitive Pressure Sensor Using Silver Nanowire/PEDOT:PSS Hybrid Film (in Korean)", J. Microelectron. Packag. Soc., 23(3), 21 (2016). https://doi.org/10.6117/kmeps.2016.23.3.021
  7. J. S. Kang, J. H. Kim, and M. Y. Jeong, "A Study on the Silver Nanoparticle Deposition for Optical Amplification (in Korean)", J. Microelectron. Packag. Soc., 25(1), 11 (2018). https://doi.org/10.6117/KMEPS.2018.25.1.011
  8. A. Guerrero-Martinez, J. Perez-Juste, and L. M. Liz-Marzan, "Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials", Adv. Mater., 22(11), 1182 (2010). https://doi.org/10.1002/adma.200901263
  9. F. Hoffmann, M. Cornelius, J. Morell, and M. Froba, "Silica-Based Mesoporous Organic-Inorganic Hybrid Materials", Angew. Chem., Int. Ed. Engl., 45(20), 3216 (2006). https://doi.org/10.1002/anie.200503075
  10. F. Marlow, M. P. Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, "Opals: Status and Prospects", Angew. Chem., Int. Ed., 48(34), 6212 (2009). https://doi.org/10.1002/anie.200900210
  11. I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Lin, "Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications", Adv. Funct. Mater., 17(8), 1225 (2007). https://doi.org/10.1002/adfm.200601191
  12. H. Zou, S. Wu, and J. Shen, "Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications", Chem. Rev., 108(9), 3893 (2008). https://doi.org/10.1021/cr068035q
  13. C. S. Stan, M. S. Secula, and D. Sibiescu, "Highly luminescent polystyrene embedded CdSe quantum dots obtained through a modified colloidal synthesis route", Electron. Mater. Lett., 8(3), 275 (2012). https://doi.org/10.1007/s13391-012-1108-0
  14. D. Thomas, K. Sreelakshmi, K. Manu, and M. Sebastian, "Polystyrene-Silver composites for embedded capacitor applications," in Applied Electromagnetics Conference (AEMC), 2011 IEEE, 1, (2011).
  15. C. Sanchez, B. Julian, P. Belleville, and M. Popall, "Applications of hybrid organic-inorganic nanocomposites", J. Mater. Chem., 15(35-36), 3559 (2005). https://doi.org/10.1039/b509097k
  16. J. F. Chen, H. M. Ding, J. X. Wang, and L. Shao, "Preparation and characterization of porous hollow silica nanoparticles for drug delivery application", Biomaterials, 25(4), 723 (2004). https://doi.org/10.1016/S0142-9612(03)00566-0
  17. A. Liberman, N. Mendez, W. C. Trogler, and A. C. Kummel, "Synthesis and surface functionalization of silica nanoparticles for nanomedicine", Surf. Sci. Rep., 69(2-3), 132 (2014). https://doi.org/10.1016/j.surfrep.2014.07.001
  18. X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, and S. J. s. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics", Science, 307(5709), 538 (2005). https://doi.org/10.1126/science.1104274
  19. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. J. N. b. Bruchez, "Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots", Nat. Biotechnol., 21(1), 41 (2003). https://doi.org/10.1038/nbt764
  20. Y. Kim, B. Hwang, S. Song, B. Ree, Y. Kim, S. Cho, K. Heo, Y. Kwon, and M. Ree, "Well-defined hollow nanochanneledsilica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders", Nanoscale, 7(35), 14774 (2015). https://doi.org/10.1039/C5NR03800F
  21. H. Li, C. S. Ha, and I. Kim, "Facile Fabrication of Hollow Silica and Titania Microspheres Using Plasma-Treated Polystyrene Spheres as Sacrificial Templates", Langmuir, 24(19), 10552 (2008). https://doi.org/10.1021/la801686z
  22. L. I. C. Sandberg, T. Gao, B. P. Jelle, A. J. A. i. M. S. Gustavsen, and Engineering, "Synthesis of hollow silica nanospheres by sacrificial polystyrene templates for thermal insulation applications", Adv. Mater. Sci. Eng., 2013, 6 (2013).
  23. Y. C. Hong, J. H. Kim, S. C. Cho, and H. S. Uhm, "ZnO nanocrystals synthesized by evaporation of Zn in microwave plasma torch in terms of mixture ratio of $N_2$ to $O_2$", Phys. Plasmas, 13(6), 063506 (2006). https://doi.org/10.1063/1.2211107
  24. X. L. Hu, Y. J. Zhu, and S. W. Wang, "Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods", Mater. Chem. Phys., 88(2-3), 421 (2004). https://doi.org/10.1016/j.matchemphys.2004.08.010
  25. X. Zheng, Y. Xie, L. Zhu, X. Jiang, and A. Yan, "Formation of vesicle-templated CdSe hollow spheres in an ultrasoundinduced anionic surfactant solution", Ultrason. Sonochem., 9(6), 311 (2002). https://doi.org/10.1016/S1350-4177(02)00086-X
  26. W. I. Park, J. M. Kim, J. W. Jeong, and Y. S. Jung, "Deep-Nanoscale Pattern Engineering by Immersion-Induced Self-Assembly", ACS Nano, 8(10), 10009 (2014). https://doi.org/10.1021/nn504995c