DOI QR코드

DOI QR Code

A Study on the Various Noerok from Janggi-myeon, Pohang

포항 장기면 일대에 산출되는 뇌록의 다양성 연구

  • Mun, Seong Woo (Division of Restoration Technology, National Research Institute of Cultural Heritage) ;
  • Kim, Jae Hwan (Division of Natural Cultural, National Research Institute of Cultural Heritage) ;
  • Kong, Dal-Yong (Division of Natural Cultural, National Research Institute of Cultural Heritage) ;
  • Moon, Dong Hyeok (Division of Conservation Science, National Research Institute of Cultural Heritage) ;
  • Jeong, Hye Young (Division of Restoration Technology, National Research Institute of Cultural Heritage)
  • 문성우 (국립문화재연구소 복원기술연구실) ;
  • 김재환 (국립문화재연구소 자연문화재연구실) ;
  • 공달용 (국립문화재연구소 자연문화재연구실) ;
  • 문동혁 (국립문화재연구소 보존과학연구실) ;
  • 정혜영 (국립문화재연구소 복원기술연구실)
  • Received : 2018.11.12
  • Accepted : 2018.11.29
  • Published : 2018.12.31

Abstract

Noerok is a green pigment made of mineral used the Gachil(priming coat) of wooden architecture in Chosun Dynasty era. It has been reported that various Noerok are discovered in Janggimyeon, Pohang. In this study, The Noerok from two places is compared and discussed. Noerok in the two places has blulsh-green to green color, and it is similar to their occurrences on fracture filling, vein and dike on outcrop. However, there are differences between two sites according to its petrological feature, mineral composition and geochemistry. While the Noeseongsan sample is mostly celadonite, Gwangjeongsan samples are characterized by celadonite with varying contents of cristobalite, tridymite, feldspar, along with some vitrified contents. In terms of major elements, the amount of $Al_2O_3$, $Fe_2O_3$, MgO and $K_2O$ decreases linearly with increasing $SiO_2$, whereas $Fe_2O_3$ is linearly proportional to MgO. In summary, Noerok in the study areas can be classified into 4 types (type 1, type 2, type 3-1, type 3-2) base on color, mineral composition, elemental composition, and vitrification grade.

뇌록은 조선시대 건축물의 바탕칠(가칠)에 사용된 광물 안료로서, 포항 장기면 일대 뇌성산과 광정산에서 다양한 뇌록이 산출된다고 보고되었다. 이번 연구에서 두 지역에서 나타나는 뇌록의 암석학적 연구를 실시하여 비교 고찰 하고자 하였다. 연구결과 두 지역에서 산출되는 뇌록은 청록색 내지 녹색을 띠며 산출양상은 간극충진상 또는 맥상으로 유사하다. 하지만 두지역의 뇌록에 대한 기재적인 특성, 구성광물의 종류, 지구 화학적 특성에서 차이를 보인다. 뇌성산에서 산출하는 뇌록의 구성광물은 대부분 셀라도나이트인 반면 광정산의 경우는 셀라도나이트, 석영, 크리스토발라이트, 트리디마이트, 장석 등 다양하며 유리질화 된 뇌록도 관찰된다. 전체 뇌록시료에 대한 주성분 분석 결과, $SiO_2$가 증가함에 따라 $Al_2O_3$, $Fe_2O_3$, MgO, $K_2O$는 선형적으로 감소하며, MgO가 증가함에 따라 $Fe_2O_3$는 증가하는 경향을 보인다. 포항시 장기면 일대에 산출되는 뇌록은 암석의 색, 구성광물, 유리질화 유무에 의하여 네 가지(Type 1, Type 2, Type 3-1, Type 3-2) 타입으로 분류되며, 이는 지구화학적 특징에 따른 분류와 일치하는 경향을 보인다.

Keywords

HGOSBQ_2018_v27n4_195_f0001.png 이미지

Fig. 1. Geological map around Mt. Noeseongsan, showing study area of the present study (Kim et al., 2011).

HGOSBQ_2018_v27n4_195_f0002.png 이미지

Fig. 2. Occurrence and mineral composition of Noerok in Mt. Noeseongsan site. (a) Outcrop photographs showing Noeseongsan site. (b) Output condition of Noerok. (c) Noerok samples, showing light blue green-dark blue green color. (d) The boundary between Noeseongsan basaltic rock and Noerok. (e~f) Thin-section photomicrographs showing the boundary between Noeseongsan basaltic rock and Noerok. (Mineral abbreviation: Cel, celadonite; Ol, olivine; Pl, plagioclase).

HGOSBQ_2018_v27n4_195_f0003.png 이미지

Fig. 3. Occurrence and mineral composition of Noerok in Mt. Gwangjeongsan site. (a~c) Outcrop photographs showing Gwangjeongsan site. (d) Vitrified and non-vitrified Noerok samples. (e) The boundary between Noeseongsan basaltic rock and Noerok from Gwangjeongsan site. (f) Thin-section photomicrographs showing Noeseongsan basaltic rock from Gwangjeongsan place. (Mineral abbreviation: Ap, apatite; Cel, celadonite; Cpx, clinopyroxene; Opx, orthopyroxene; Ol, olivine; Opq, opaque mineral; Pl, plagioclase)

HGOSBQ_2018_v27n4_195_f0004.png 이미지

Fig. 4. Classification of Noerok samples according to its color.

HGOSBQ_2018_v27n4_195_f0005.png 이미지

Fig. 5. X-ray diffraction analysis of Noerok samples from Mt. Noeseongsan and Mt. Gwangjeongsan.

HGOSBQ_2018_v27n4_195_f0006.png 이미지

Fig. 6. SiO2, MgO versus oxides variation diagrams of Noerok samples.

HGOSBQ_2018_v27n4_195_f0007.png 이미지

Fig. 7. A classified table of Noerok sample according to its features from present study.

Table 1. Chemical analyses of the Noerok samples in study area. Unit: (wt. %)

HGOSBQ_2018_v27n4_195_t0001.png 이미지

References

  1. Ahn, B.-C.., Do, J.-Y.., Kim, S.-J., Lee, K.-K., and Lee, S.-J., 2007, Development of functional inorganic pigments by the study of Korean traditional green pigments(Noe-Rok). Project Research Report, National Science Museum. pp. 31-49 (in Korean with English abstract).
  2. Bustillo, M.A. and Martinez-Frias. J., 2003, Green opals in hydrothermalized basalts (Tenerife Island, Spain): alteration and aging of silica pseudoglass. Journal of Non-Crystalline Solids, 323, 27-33. https://doi.org/10.1016/S0022-3093(03)00288-6
  3. Do, J-Y., Lee S-J., Kim, S-J., Yun, Y-K. and Ahn, B-C., 2008, Characterization of Noerog, A Traditional Green Mineral Pigment. Journal of the Mineralogical Society of Korea, 21, 271-281. (in Korean with English abstract).
  4. Jang, Y.-D., 2017, A report on the collection and preservation methods of Noerok and its causes occurred the southeastern part of Gwangjeong mountian in Janggimyeon of Nam-gu, Pohang. Kyungpook National University, Korea Lang & Housing Corporation, 5-18.
  5. Jeong, G.-Y., Cho, H.-G. and Do, J.-Y., 2018, Occurrence and Mineralogical Properties of Green-Blue Inorganic Pigments in Korea. Journal of the Mineralogical Society of Korea, 31, 33-46. https://doi.org/10.9727/jmsk.2018.31.1.33
  6. Kim, B.K., 1970. A study on the Neogene Tertiary deposits in Korea. The Journal of Geological Society of Korea, 6, 77-96. (in Korean with English abstract).
  7. Kim, M., 2007, Study on Noerok from Mt. Noeseongsan, Pohang, Gyeongsangbuk-do, Journal of BULKYOMISULSAHAK, 5, 621-632.
  8. Kim, C.-S. and Kim, J.-S., 2007, The occurrence and formation mode of basaltic rocks in the Tertiary Janggi Basin. Journal of the Petrological Society of Korea, 16, 73-81.
  9. Kim, M.-C., Kim, J.-S., Jung, S.-H., Son, M. and Sohn, Y.-K., 2011, Bimodal Volcanism and Classification of the Miocene Basin Fill in the Northern Area of the Janggi-Myeon, Pohang, Southeast Korea. Journal of the Geological Society of Korea, 47, 585-612 (in Korean with English abstract).
  10. Kim, M.C., Gihm, Y.S., Son, E.Y., Son, M., Hwang, I.G., Shin, Y.J. and Choi, H.S., 2015, Assessment of the potential for geological storage of CO2 based on structural and sedimentologic characteristics in the Miocene Janggi Basin, SE Korea. The Journal of the Geological Society of Korea. 51, 253-271 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.3.253
  11. Lee, H.K., Moon, H.-S., Min, K.D., Kim, I.-S., Yun, H. and Itaya, T., 1992. Paleomagnetism, stratigraphy and geologic structure of the Tertiary Pohang and Changgi basins; K-Ar ages for the volcanic rocks. The Journal of the Korean Institute of Mining Geology, 25, 337-349 (in Korean with English abstract).
  12. Lee, S.J., Choi, I.S., Lee, K.K.,Do, J.Y. and Ahn, B.C., 2007, An analysis of Noerok used in temple Dancheong in Gyeongju area, The Kyong ju MunHwa Youn Gu, 9, 1-12 (in Korean with English abstract).
  13. Lee, J.-J., Kim, J.-H. and Han, M.-S., 2018, Mineralogical Characteristic Changes of Noerok Occurred from Noeseong Mountain, a Raw Material for Pigment, Depending on its Firing Process. Journal of the Mineralogical Society of Korea, 31, 23-32 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2018.31.1.23
  14. Neuhoff P.S., Fridrilsson T., Arnorsson S. and Bird D.K., 1999, Porosity evolution and mineral paragenesis during low-grade metamorphism of basaltic lavas at Teigarhorn, Eastern Iceland. Journal of Science, 299, 467-501.
  15. Odin, G.S., Despraides, A., Fullagar, P.D., Bellon, H., Decarreau, A., Frohlich, F. and Zelvelder, M., 1988, Nature and Geological Significance of Celadonite. Developments in Sedimentology, 45, 337-398.
  16. Smith, D.K., 1998, Opal, cristobalite, and tridymite: Noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography. Powder Diffraction, 13, 2-19 https://doi.org/10.1017/S0885715600009696
  17. Son, M., 1998. Formation and evolution of the Tertiary Miocene basins in southeastern Korea: Structural and paleomagnetic approaches. Ph.D. Thesis, Pusan National University, Busan, 233. (in Korean with English abstract).
  18. Son, M. and Kim, I.-S., 1994, Geological structures and evolution of the Tertiary Chongja basin, southeastern margin of the Korean peninsula. Economic and Environmental Geology, 27, 65-80. (in Korean with English abstract).
  19. Son, M., Kim, I-S. and Sohn, Y.K., 2005, Evolution of the miocene waup basin, SE Korea, in response to dextral shear along the southwestern margin of the East Sea (Sea of Japan). Journal of Asian Earth Science, 25, 529-544. https://doi.org/10.1016/j.jseaes.2004.06.003
  20. Son, M., Seo, H.-J. and Kim, I.-S., 2000, Geological structures and evolution of the Miocene Eoil Basin, southeastern Korea. Geosciences Journal, 42, 73-88.
  21. Tateiwa, I., 1924, 1:50,000 Geological atlas of Chosen, No.2, Ennichi, Kuryuho and Choyo sheets, 6p., 3maps. Geological Survey, Government-General of Chosen(in Japanese).
  22. Yoon, S., 1992, Geology of the Tertiary Yangnam and Pohang Basins, Korea, Bulletin of the Mizunami Fossils Musium, 19, 13-31.