DOI QR코드

DOI QR Code

Study on the Forecasting and Effecting Factor of BDI by VECM

VECM에 의한 BDI 예측과 영향요인에 관한 실증연구

  • Lee, Sung-Yhun (School of Port and Logistics, Kaya University) ;
  • Ahn, Ki-Myung (Division of Shipping Management, Korea Maritime and Ocean University)
  • 이성윤 (가야대학교 항만물류학과) ;
  • 안기명 (한국해양대학교 해운경영학부)
  • Received : 2018.09.28
  • Accepted : 2018.10.18
  • Published : 2018.12.31

Abstract

The Bulk market, unlike the line market, is characterized by stiff competition where certain ship or freight owners have no influence on freight rates. However, freights are subject to macroeconomic variables and economic external shock which should be considered in determining management or chartering decisions. According to the results analyzed by use of ARIMA Inventiom model, the impact of the financial crisis was found to have a very strong bearing on the BDI index. First, according to the results of the VEC model, the libor rate affects the BDI index negatively (-) while exchange rate affects the BDI index by positively (+). Secondly, according to the results of the VEC model's J ohanson test, the order ship volume affects the BDI index by negatively (-) while China's economic growth rate affects the BDI index by positively (+). This shows that the shipping company has moved away from the simple carrier and responded appropriately to changes in macroeconomic variables (economic fluctuations, interest rates and exchange rates). It is believed that the shipping companies should be more aggressive in its "trading" management strategy in order to prevent any unfortunate situation such as the Hanjin Shipping incident.

부정기시장은 정기선시장과는 달리 특정 선주나 화주가 운임에 영향을 미칠 수 없는 완전경쟁시장으로서 화물수요와 선복량에 의해 운임이 결정되지만, 금리, 환율, 경제성장율과 같은 거시경제 변수와 금융위기와 같은 경제적 충격에도 영향을 받기 때문에 용선의사결정 시 이를 고려하여야 한다. 본 논문은 금융위기 전후기간 동안(2005년부터 2017년) BDI지수에 영향을 미치는 요인이 무엇인지를 분석하고 예측하였다. ARIMA 개입모형 분석결과에 의하면, 금융위기충격은 BDI 지수에 매우 강한 영향관계가 있는 것으로 검정되었다. VEC모형 분석 결과에 의하면, 첫째로, 리보금리는 BDI 지수에 음(-)의 영향을 미치고 환율은 양(+)의 영향을 미치는 것으로 나타나고 있다. 셋째로, Johansen 검정결과에 의하면, 중국경제성장율이 BDI 지수에 정(+)의 영향을 미치고 있는데 이는 선행연구와 마찬가지로 중국은 세계의 공장이면서 소비시장으로 원자재 및 석유수요가 매우 높아 BDI 지수에 정(+)의 영향관계가 있는 것으로 입증되었다. 넷째로, 벌크발주 선복량은 BDI 지수에 부(-)의 영향을 미치는 것으로 실증되었다. 따라서, 해운선사는 단순한 운송기업에서 벗어나서 거시경제변수변화에 적절히 대처하고 경기변화에 따라 발주선복량을 적절히 조절할 수 있는 트레이딩(Trading) 경영전략을 보다 적극적으로 구사하여야만 한진해운파산 같은 안타까운 사태를 방지할 수 있을 것으로 판단된다.

Keywords

GHMHD9_2018_v42n6_546_f0001.png 이미지

Fig. 1 BDI Annual trend

GHMHD9_2018_v42n6_546_f0002.png 이미지

Fig. 2 Bulk shipping freight market

GHMHD9_2018_v42n6_546_f0003.png 이미지

Fig. 3 Actual and forcasting BDI

GHMHD9_2018_v42n6_546_f0004.png 이미지

Fig. 4 Response for BDI by impulse variable

GHMHD9_2018_v42n6_546_f0005.png 이미지

Fig. 5 Forcast for BDI by libor

GHMHD9_2018_v42n6_546_f0006.png 이미지

Fig. 6 Forcast for BDI by exchange rate

GHMHD9_2018_v42n6_546_f0007.png 이미지

Fig. 7 Forcast for BDI by order ship volume

GHMHD9_2018_v42n6_546_f0008.png 이미지

Fig. 8 Forcast for BDI by china economic growth ratio

Table 1 Preceding study

GHMHD9_2018_v42n6_546_t0001.png 이미지

Table 2 Descriptive statistics for variables

GHMHD9_2018_v42n6_546_t0002.png 이미지

Table 3 Correlations analysis

GHMHD9_2018_v42n6_546_t0003.png 이미지

Table 4 Dickey-Fuller test Results

GHMHD9_2018_v42n6_546_t0004.png 이미지

Table 5 ARIMA model analsis results

GHMHD9_2018_v42n6_546_t0005.png 이미지

Table 6 Statistics of error

GHMHD9_2018_v42n6_546_t0006.png 이미지

Table 7 ARIMA invention model analsis results

GHMHD9_2018_v42n6_546_t0007.png 이미지

Table 8 AIC•HQIC•SBIC results

GHMHD9_2018_v42n6_546_t0008.png 이미지

Table 9 Vecrank analsis results

GHMHD9_2018_v42n6_546_t0009.png 이미지

Table 10 Fitness of variables

GHMHD9_2018_v42n6_546_t0010.png 이미지

Table 11 VECM analsis results

GHMHD9_2018_v42n6_546_t0011.png 이미지

Table 12 Johansen cointegrating test

GHMHD9_2018_v42n6_546_t0012.png 이미지

Table 13 Johansen normalization restrictions imposed

GHMHD9_2018_v42n6_546_t0013.png 이미지

Table 14 BDI comparison between Focasting and Actual

GHMHD9_2018_v42n6_546_t0014.png 이미지

References

  1. Chun, C. Y.(1997), "An Characteristic Analysis of the Dry Bulk Market by Structural VAR Model, Occean Policy Research, Vol. 12, pp. 185-203.
  2. Chung, S. K. and Kim, S. K.(2011), A Study on the Effect of Changes in Oil Price on Dry Bulk Freight Rates and Intercorrelations between Dry Bulk Freight Rates, Journal of Korea Port Economic Association, Vol. 27, No. 2, pp. 217-240.
  3. Jeong, S. J.(2016), A Study on the Relationship between Microeconomic Variables and BDI, The Graduate School of Economics, Sogang University, a master's thesis.
  4. Kim, C. B.(2013), Dynamic Causality among International Financial Variables, China Effect, and Shipping Business Cycle after the Global Financial Crisis, Journal of Shipping and Logistics, Vol. 29, No. 3, pp. 575-588.
  5. Kim, T. S.(2012), Study on the method to cope with fluctuation in the freight of tramper in shipping market, The Graduate School of Human Resource Development, Chung-Ang University, a master's thesis.
  6. Klovland, J. T., "Business Cycles, Commodity Prices and Shipping Freight Rates: Some Evidence from the pre-WWI Period", Paper presented at the Workshop on Market Performance and the Welfare Gains of Market Integration in History, European University Institute, Florence, Italy, July 1-4, 2004.
  7. Lee, E. S.(2007), A Study on the Effective Factor of Bulk Shipping Freight Rate, The Graduate School of Human Resource Development, Chung-Ang University, a master's thesis.
  8. Lee, S. M.(2008), A Study on the Change of Determinants on Freight Fluctuationsin Dry Bulk Shipping Market as per Shipping Crisis, The Graduate School of Human Resource Development, Chung-Ang University, a master's thesis.
  9. Lee, S. Y.(2016), "The Effects of Economic Conditions on Capital Structure: Evidence from Korean Shipping Firms", Journal of Korean Navigation and Port Research, Vol. 40, No. 6, pp. 451-458. https://doi.org/10.5394/KINPR.2016.40.6.451
  10. Lee, S. Y. and Ahn, K. M.(2017), "Study on the Relationship between Capital Structure and Earning Management in the Korean Shipping Companies", Journal of Korean Navigation and Port Research, Vol. 41, No. 4, pp. 235-241.
  11. Mo, S, W.(1998), "The Bulk Freight by Exchange rate Volatjlity", Journal of Korea Port Economic Association, Vol. 14, No. 2, pp. 515-530.
  12. Mo, S, W.(2005), "Baltic Dry Index Volatility and News Impacts,Journal of Korea Port Economic Association, Vol. 21, No. 2, pp. 65-79.
  13. Mo, S, W.(2007), "The Unbiaseness Property and Causality of the Baltic Freight Indices", Journal of Shipping and Logistics, Vol. 54, pp. 1-21.
  14. Rim, J. K., Kim, W. H. and Ko, B. W.(2010), "An Empirical Analysis of the Dry Bulk Market Using a Recursive VAR Model", Journal of Shipping and Logistics, Vol. 26, No. 1, pp. 17-35.
  15. Shim, J. H. and Mo, S. W.(2008),"Forcasting the Baltic Dry Freight Index via Econometric Approaches", Journal of Shipping and Logistics, Vol. 58, pp. 1-18.
  16. Stopford, M., Maritime Economics, 2nd ed., Routledge: London, U.K.,(1997).