DOI QR코드

DOI QR Code

Electrochemical Corrosion Damage Characteristics of Aluminum Alloy Materials for Marine Environment

해양환경용 알루미늄 합금 재료의 전기화학적 부식 손상 특성

  • Kim, Sung Jin (Department of Materials Science and Engineering, Sunchon National University) ;
  • Hwang, Eun Hye (Department of Materials Science and Engineering, Sunchon National University) ;
  • Park, Il-Cho (Division of Marine Engineering, Mokpo National Maritime University) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
  • 김성진 (순천대학교 신소재공학과) ;
  • 황은혜 (순천대학교 신소재공학과) ;
  • 박일초 (목포해양대학교 기관시스템공학부) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2018.10.17
  • Accepted : 2018.12.21
  • Published : 2018.12.31

Abstract

In this study, various electrochemical experiments were carried out to compare the corrosion characteristics of AA5052-O, AA5083-H321 and AA6061-T6 in seawater. The electrochemical impedance and potentiostatic polarization measurements showed that the corrosion resistance is decreased in the order of AA5052-O, AA5083-H321 and AA6061-T6, with AA5052-O being the highest resistant. This is closely associated with the property of passive film formed on three tested Al alloys. Based on the slope of Mott-Schottky plots of an n-type semiconductor, the density of oxygen vacancies in the passive film formed on the alloys was determined. This revealed that the defect density is increased in the order of AA5052-O, AA5083-H321 and AA6061-T6. Considering these facts, it is implied that the addition of Mg, Si, and Cu to the Al alloys can degrade the passivity, which is characterized by a passive film structure containing more defect sites, contributing to the decrease in corrosion resistance in seawater.

Keywords

PMGHBJ_2018_v51n6_421_f0001.png 이미지

Fig. 1. Microstructures of Al alloys; (a) AA5052-O, (b) AA5083-H321, (c) AA6061-T6.

PMGHBJ_2018_v51n6_421_f0002.png 이미지

Fig. 2. EIS Nyquist plots of (a) AA5052-O with immersion time in seawater, and (b) three tested Al alloys after 7 hrs immersion in seawater.

PMGHBJ_2018_v51n6_421_f0003.png 이미지

Fig. 3. Mott-Schottky plots of passive films formed on three tested Al alloys in 0.5M H2SO4 solution.

PMGHBJ_2018_v51n6_421_f0004.png 이미지

Fig. 5. Surface morphologies of three Al alloys after the polarization test in seawater.

PMGHBJ_2018_v51n6_421_f0005.png 이미지

Fig. 6. 3D analysis of three Al alloys after the polarization test in seawater.

PMGHBJ_2018_v51n6_421_f0006.png 이미지

Fig. 4. (a) Potentiostatic polarization curves of three tested Al alloys in seawater, and (b) surface view observation after the polarization test.

Table 1. Chemical compositions of aluminum alloys (wt%)

PMGHBJ_2018_v51n6_421_t0001.png 이미지

Table 2. Chemical compositions and properties of natural seawater

PMGHBJ_2018_v51n6_421_t0002.png 이미지

Table 3. Donor density of passive film formed on three tested aluminum alloys

PMGHBJ_2018_v51n6_421_t0003.png 이미지

References

  1. R. Kaibyshev, F. Musin, D. R. Lesuer, T. G. Nieh, Superplastic behavior of an Al-Mg alloy at elevated temperatures, Mater. Sci. Eng. A 342 (2003) 169-177. https://doi.org/10.1016/S0921-5093(02)00276-9
  2. K. A. Yasakau, M. L. Zheludkevich, S. V. Lamaka, M. G. Ferreira, Role of intermetallic phases in localized corrosion of AA5083, Electrochim. Acta 52 (2007) 7651-7659. https://doi.org/10.1016/j.electacta.2006.12.072
  3. A. Aballe, M. Bethencourt, F. J. Botana, M. J. Cano, M. Marcos, Localized alkaline corrosion of alloy AA5083 in neutral 3.5% NaCl solution, Corros. Sci. 43 (2001) 1657-1674. https://doi.org/10.1016/S0010-938X(00)00166-9
  4. U. Donatus, G. E. Thompson, J. A. Omotoyinbo, K. K. Alaneme, S. Aribo, O. G. Agbabiaka, Corrosion pathways in aluminium alloys, Trans. Nonferrous Met. Soc. China 27 (2017) 55-62. https://doi.org/10.1016/S1003-6326(17)60006-2
  5. C. Vargel, Corrosion of aluminium, Elsevier (2004) 113-137.
  6. J. B. Bessone, D. R. Salinas, C. E. Mayer, M. Ebert, W. J. Lorenz, An EIS study of aluminium barrier-type oxide films formed in different media, Electrochim. Acta 37 (1992) 2283-2290. https://doi.org/10.1016/0013-4686(92)85124-4
  7. A. G. Munoz, J. B. Bessone, Pitting of aluminium in non-aqueous chloride media, Corros. Sci. 41 (1999) 1447-1463. https://doi.org/10.1016/S0010-938X(98)00199-1
  8. M. Bethencourt, F. J. Botana, J. J. Calvino, M. Marcos Barcena, J. Perez, M. A. Rodriguez, The influence of the surface distribution of Al6 (MnFe) intermetallic on the electrochemical response of AA5083 aluminium alloy in NaCl solutions, In Materials Science Forum, Trans Tech Publications, 289 (1998) 567-574.
  9. B. Zaid, D. Saidi, A. Benzaid, S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy, Corros. Sci. 50 (2008) 1841-1847. https://doi.org/10.1016/j.corsci.2008.03.006
  10. P. Arellanes-Lozada, O. Olivares-Xometl, D. Guzman-Lucero, N. V. Likhanova, M. A. Dominguez-Aguilar, I. V. Lijanova, E. Arce-Estrada, The inhibition of aluminum corrosion in sulfuric acid by poly(1-vinyl-3-alkyl-imidazolium hexafluorophosphate), Materials 7 (2014) 5711-5734. https://doi.org/10.3390/ma7085711
  11. A. Fattah-alhosseini, Passivity of AISI 321 stainless steel in 0.5M $H_2SO_4$ solution studied by Mott-Schottky analysis in conjunction with the point defect model, Arab. J. Chem. 9 (2016) S1342-S1348. https://doi.org/10.1016/j.arabjc.2012.02.015
  12. K. D. Ralston, N. Birbilis, C. H. J. Davies, Revealing the relationship between grain size and corrosion rate of metals, Scr. Mater. 63 (2010) 1201-1204. https://doi.org/10.1016/j.scriptamat.2010.08.035
  13. K. D. Ralston, N. Birbilis, Effect of grain size on corrosion: a review, Corros. 66 (2010) 075005-075005. https://doi.org/10.5006/1.3462912
  14. M. K. Chung, Y. S. Choi, J. G. Kim, Y. M. Kim, J. C. Lee, Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys, Mater. Sci. Eng. A 366 (2004) 282-291. https://doi.org/10.1016/j.msea.2003.08.056
  15. T. S. Mahmoud, Effect of friction stir processing on electrical conductivity and corrosion resistance of AA6063-T6 Al alloy, Proc. IMechaE. C: J. Mechanical Engineering Science, 222 (2008) 1117-1123. https://doi.org/10.1243/09544062JMES847
  16. W. R. Osorio, C. M. Freire, A. Garcia, The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings, Mater. Sci. Eng. A 402 (2005) 22-32. https://doi.org/10.1016/j.msea.2005.02.094
  17. S. J. Kim, S. J. Lee, J. Y. Jeong, K. H. Kim, Electrochemical characteristics of Al-Mg and Al-Mg-Si alloy in sea water, Trans. Nonferrous Met. Soc. China 22 (2012) s881-s886. https://doi.org/10.1016/S1003-6326(12)61820-2
  18. S. J. Kim, S. K. Jang, M. S. Han, J. C. Park, J. Y. Jeong, S. O. Chong, Mechanical and electrochemical characteristics in sea water of 5052-O aluminum alloy for ship, Trans. Nonferrous Met. Soc. China 23 (2013) 636-641. https://doi.org/10.1016/S1003-6326(13)62510-8
  19. J. D. Kim, S. I. Pyun, Effects of electrolyte composition and applied potential on the repassivation kinetics of pure aluminium, Electrochem. Acta 40 (1995) 1863-1869. https://doi.org/10.1016/0013-4686(95)94180-3
  20. J. K. Chon, Y. K. Kim, Investigation of the growth kinetics of Al oxide film in sulfuric acid solution, J. Kor, Chem. Soc. 54 (2010) 380-386. https://doi.org/10.5012/jkcs.2010.54.4.380
  21. O. I. Sekunowo, S. I. Durowaye, E. C. Anozie, Corrosion propensity of cold deformed 5052 aluminium alloy in seawater, Br. J. Appl. Sci. Tech. 8 (2015) 46-52. https://doi.org/10.9734/BJAST/2015/16681
  22. R. Rosliza, Improvement of corrosion resistance of aluminium alloy by natural products, Corrosion Resistance, InTech (2012) 377-396.
  23. E. M. Sherif, Corrosion and corrosion inhibition of aluminum in arabian gulf seawater and sodium chloride solutions by 3-Amino-5-Mercapto-1,2,4-triazole, Int. J. Electrochem. Sci. 6 (2011) 1479-1492.
  24. B. T. Lu, Y. Zeng, X. Pang, J. L. Luo, Effects of hydrogen and tensile stress on passivity of carbon steel, Corros. Eng. Sci. Techn. 50 (2015) 186-190. https://doi.org/10.1179/1743278215Y.0000000020
  25. W. L. Xu, T. M. Yue, H. C. Man, Stress corrosion cracking behaviour of excimer laser treated aluminium alloy 6013, Mater. Trans. 49 (2008) 1836-1843. https://doi.org/10.2320/matertrans.MRA2008105
  26. E. Sikora, D. D. Macdonald, Defining the passive state, Solid State Ion. 94 (1997) 141-150. https://doi.org/10.1016/S0167-2738(96)00505-X
  27. M. J. Carmezim, A. M. Simoes, M. F. Montemor, M. D. C. Belo, Capacitance behavior of passive films on ferritic and austenitic stainless steel, Corros. Sci. 47 (2005) 581-591. https://doi.org/10.1016/j.corsci.2004.07.002
  28. J. R. Davis, Alloying : understanding the basics, second Ed, ASM International, USA (2001) 351-416.
  29. A. Afseth, J. H. Nordlien, G. M. Scamans, K. Nisancioglu, Filiform corrosion of binary aluminium model alloys, Corros. Sci. 44 (2002) 2529-2542. https://doi.org/10.1016/S0010-938X(02)00029-X
  30. U. Donatus, G. E. Thompson, D. Elabar, T. Hashimoto, S. Morsch, Features in aluminium alloy grains and their effects on anodizing and corrosion, Surf. Coat. Tech. 277 (2015) 91-98. https://doi.org/10.1016/j.surfcoat.2015.07.034