DOI QR코드

DOI QR Code

304 스테인레스강의 고착방지성능 향상을 위한 Sn-Al 열 확산 코팅 기술 개발

Development of Sn-Al Thermal Diffusion Coating Technology for Improving Anti-Galling Characteristics of 304 Stainless Steel

  • 황주나 (한국교통대학교 항공기계설계학과) ;
  • 강성훈 ;
  • 조성필 (한국교통대학교 4D바이오소재센터) ;
  • 정희종 (주식회사 바이브록) ;
  • 김동욱 (주식회사 바이브록) ;
  • 이방희 (주식회사 바이브록) ;
  • 황준 (한국교통대학교 항공기계설계학과) ;
  • 이용규 (한국교통대학교 4D바이오소재센터)
  • Hwang, Ju-Na (Dept. of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation) ;
  • Kang, Sung-Hun (KB-Biomed) ;
  • Cho, Sungpil (4D Biomaterials Center, Korea National University of Transportation) ;
  • Jeong, Hui-Jong (Viblock Co. Ltd.) ;
  • Kim, Dong-Uk (Viblock Co. Ltd.) ;
  • Lee, Bang-Hui (Viblock Co. Ltd.) ;
  • Hwang, Jun (Dept. of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation) ;
  • Lee, Yong-Kyu (4D Biomaterials Center, Korea National University of Transportation)
  • 투고 : 2018.08.30
  • 심사 : 2018.09.27
  • 발행 : 2018.10.31

초록

The important drawback of hardware fasteners consisted of 304 stainless steel (STS) is a frequent galling caused by a combination of friction and adhesion between the sliding surface. To improve the anti-galling effect, Sn-Al coatings by a thermal diffusion have been developed. The thermal diffusion by pack cementation with an $AlCl_3$ activator at $250^{\circ}C$ for 1 hour produced an Sn-Al alloy coating layer with an average thickness of $9.9{\pm}0.5{\mu}m$ on the surface of 304 STS fasteners. Compared with the galling frequency of the 304 STS fasteners, Sn-Al coatings on the surface of 304 STS fasteners demonstrated about 2.8-time reduction of the galling frequency.

키워드

PMGHBJ_2018_v51n5_297_f0001.png 이미지

Fig 1. Comparison of Sn-Al content by activator.

PMGHBJ_2018_v51n5_297_f0002.png 이미지

Fig 3. SEM images of 304 stainless steel nut before/after Sn-Al thermal diffusion coating and EDS analysis of coated specimen. (a) uncoated(surface) (b) coated (surface) (c) coated(cross-section) (d-f) EDS results of (a), (b), (c) respectively.

PMGHBJ_2018_v51n5_297_f0003.png 이미지

Fig 2. Formation mechanism of Sn-Al thermal diffusion coating layer using pack cementation method [3].

PMGHBJ_2018_v51n5_297_f0004.png 이미지

Fig 4. XRD patterns of Sn, Al powder and Sn-Al thermal diffusion coated 304 STS substrate.

PMGHBJ_2018_v51n5_297_f0005.png 이미지

Fig 5. Coating thickness of Sn-Al thermal diffusion coated specimens. (a) the graph of coating thickness with processing temperature and time (b) SEM image of T3 condition(Table 3)

PMGHBJ_2018_v51n5_297_f0006.png 이미지

Fig 6. Sectional view of the test configuration and the test apparatus for measuring galling resistance.

PMGHBJ_2018_v51n5_297_f0007.png 이미지

Fig 7. Result of galling test. (a) Galling frequency as a function of applied stress (b) galled test specimens.

Table 1. Chemical composition of 304 STS(substrate) (wt %)

PMGHBJ_2018_v51n5_297_t0001.png 이미지

Table 2. The ratios of Sn-Al thermal diffusion coating mixture powder (wt %)

PMGHBJ_2018_v51n5_297_t0002.png 이미지

Table 3. Test condition of Sn-Al thermal diffusion coating

PMGHBJ_2018_v51n5_297_t0003.png 이미지

참고문헌

  1. A.P. Harsha, P.K. Limaye, R. Tyagi, A. Gupta, Effect of Temperature on Galling Behavior of SS 316, 316 L and 416 Under Self-Mated Condition, Journal of Materials Engineering and Performance, 25 (2016) 4980-4987. https://doi.org/10.1007/s11665-016-2363-2
  2. A.P. Harsha, P.K. Limaye, Influence of temperature on galling resistance of SS 416, Proceedings of Malaysian International Tribology Conference, (2015) 98-99.
  3. M.C. Galetz, Coatings for Superalloys, M. Aliofkhazraei, INTECH, peer-reviewed ed, (2015) 295.
  4. X. J. Ning, J. H. Kim, H. J. Kim, C. Lee, Characteristics and heat treatment of cold-sprayed Al-Sn binary alloy coatings, Applied Surface Science, 255 (2009) 3933-3939. https://doi.org/10.1016/j.apsusc.2008.10.074
  5. M-X. Zhang, P. M. Kelly, Surface alloying of AZ91D alloy by diffusion coating, Journal of materials research, 17(10) (2002) 2477-2479. https://doi.org/10.1557/JMR.2002.0360
  6. N. P. Padture, M. Gell, E. H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science, 296 (2002) 280-284. https://doi.org/10.1126/science.1068609
  7. J. Y. Lee, J. H. Lee, J. Hwang, Y. K. Lee, Development of Zn-Al thermal diffusion coating technology for improving anti-corrosion of various metal products, Corrosion Science and Technology, 13 (2014) 195-203. https://doi.org/10.14773/cst.2014.13.5.195
  8. R. Bianco, R. A. Rapp, Pack cementation aluminide coatings on superalloys: codeposition of Cr and reactive elements, Journal of the Electrochemical Society, 140(4) (1993) 1181-1190. https://doi.org/10.1149/1.2056219
  9. 권순우, 윤재홍, 주윤곤, 조동율, 안진성, 박봉규, 9. Incoloy909 합금의 최적 알루미나이징 확산 코팅, 한국표면공학회지, 40(4) (2007) 175-179. https://doi.org/10.5695/JKISE.2007.40.4.175
  10. Z. D. Xiang, P. K. Datta, Kinetics of Low-Temperature Pack Aluminide Coating Formation on Alloy Steels, Metallurgical and Materials Transactions A, 37A (2006) 3359-3365.
  11. Standard, A.S.T.M, G196-08, Standard Test Method for Galling Resistance of Material Couples, PA:ASTM International, (2016).
  12. F. D. Geib, R. A. Rapp, Simultaneous chromizing-Aluminizing coating of low-alloy steels by a halide-activated, pack-cementation process, Oxidation of Metals, 40 (1993) 213-228. https://doi.org/10.1007/BF00664491