DOI QR코드

DOI QR Code

A Virtual Address Mapping Method for Interconnection between Terrestrial Communication Network and Underwater Acoustic Communication Network

지상 통신 네트워크와 수중음파 통신 네트워크의 상호연결을 위한 가상 주소 매핑 방법

  • Kim, Changhwa (Dept. of Computer Sci. & Eng., Gangneung-Wonju National University)
  • Received : 2018.08.06
  • Accepted : 2018.11.06
  • Published : 2018.12.30

Abstract

The terrestrial communication network and the underwater acoustic communication network have very different communication characteristics each other in operational environments, communication media, propagation delay, frequency bandwidth, transmission speed, bit error rate, and so on. These different characteristics cause some different address schemes and different maximum transmission units and, as a result, these differences must form certainly obstacles to the intercommunication between a terrestrial communication network and an underwater acoustic communication network. In this paper, we presents a method to use the virtual addresses to resolve the interconnection problem caused by different address schemes between a terrestrial communication network and an underwater acoustic communication network, and, through a mathematical modeling, we analyze the performance on the message transceiving delay time in the underwater environment.

지상 통신 네트워크와 수중음파 통신 네트워크는 동작 환경, 통신 매체, 전파 지연 속도, 주파수 대역폭, 통신 속도, 비트 에러율 등에서 매우 다른 통신 특성을 갖는다. 이러한 다른 특성들로 인해 이들 두 통신 네트워크는 주소체계와 최대 패킷 크기에서 차이가 생기며, 결과적으로, 이 차이는 두 통신 네트워크를 상호연결 하는데 장애가 될 수밖에 없다. 본 논문은 지상 통신 네트워크와 수중음파 통신 네트워크 사이에서 서로 다른 주소체계로 인해 발생하는 상호연결 문제를 해결하기 위해 가상 주소를 이용하는 방법을 제시하고 수학적 모델링을 통해 수중 환경에서의 메시지 송수신 지연 시간에 대한 성능을 분석한다.

Keywords

SMROBX_2018_v27n4_27_f0001.png 이미지

Fig. 1. Environment for the intercommunication between terrestrial network and UWA Network

SMROBX_2018_v27n4_27_f0002.png 이미지

Fig. 2. Protocol stack for interworking between terrestrial network and UWA network

SMROBX_2018_v27n4_27_f0003.png 이미지

Fig. 3. Message passing scenarios among a TR network,a gateway, and an UWA network

SMROBX_2018_v27n4_27_f0004.png 이미지

Fig. 4. Virtual address table operations

SMROBX_2018_v27n4_27_f0005.png 이미지

Fig. 5. Stepwise procedure in connection request message transmission phase (Phase 1)

SMROBX_2018_v27n4_27_f0006.png 이미지

Fig. 6. Stepwise procedure in the phase of a virtual address record generation and insertion to the virtual address table (Phase 2) and in the phase of the connection request message transmission to UWA node (Phase 3)

SMROBX_2018_v27n4_27_f0007.png 이미지

Fig. 7. Stepwise procedure in the phase of the connection request message processing and response message transmission to TR node via the gateway (Phase 4)

SMROBX_2018_v27n4_27_f0008.png 이미지

Fig. 8. Stepwise procedure in the phase of the interconnection of two different address schemes by using the virtual address table (Phase 5) and in the phase of the response message transmission to TR node (Phase 6)

SMROBX_2018_v27n4_27_f0009.png 이미지

Fig. 9. Message transceiving process in UWA communication area

SMROBX_2018_v27n4_27_f0010.png 이미지

Fig. 10. Delay time (ms) according to nm and distavg between the gateway and the end UWA node

Table 1. Naming of the TR and UWA communication network protocol layers corresponding to network protocol layers (TR: TeRrestrial, UWA: UnderWater Acoustic, Comm.: Communication)

SMROBX_2018_v27n4_27_t0001.png 이미지

Table 2. Main attributes of the virtual address table

SMROBX_2018_v27n4_27_t0002.png 이미지

Table 3. Description of main attributes of the virtual address table

SMROBX_2018_v27n4_27_t0003.png 이미지

Table 4. Notations used from Figure 5 to Figure 8

SMROBX_2018_v27n4_27_t0004.png 이미지

Table 5. Modeling parameter notations

SMROBX_2018_v27n4_27_t0005.png 이미지

Table 6. Model parameter values estimated from real system environments

SMROBX_2018_v27n4_27_t0006.png 이미지

Table 7. Detailed delay time (ms) according to nm and distavg

SMROBX_2018_v27n4_27_t0007.png 이미지

References

  1. Akyil, I.F., D. Pompili and T. Melodia (2005) "Underwater acoustic sensor networks: research challenges", Ad Hoc Networks, 3(3), 257-279. https://doi.org/10.1016/j.adhoc.2005.01.004
  2. Hagino, J. and K. Yamamoto (2001) "An IPv6-to-IPv4 Transport Relay Translator", RFC 3142, 1-11.
  3. Jo, Y., H. Shin, H. Nam, S. Ahn and S, An (2010), "The architecture of surface gateway for underwater acoustic sensor networks", 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, Hong Kong, China, 307-310.
  4. Kim, P.J. and C.H. Kim (2016) "Requirements for the interoperability between the terrestrial network and the underwater sensor network", Proceedings of the 2016 Autumn Conference and Regular General Meeting of the Korea Society for Simulation, Seoul, Korea, 335-355.
  5. Kim P.S. (2017) "Analysis and comparison of tunneling based IPv6 transition mechanisms", International Journal of Applied Engineering Research, 12(6), 894-897.
  6. Lee, J.H., J.W. Park, J.Y. Park, S.J. Seo and Y.K. Lim (2015) "Development of a gateway system between underwater and land network and real-sea performance test", Journal of the Korea Institute of Information and Communication Engineering, 40(6), 1200-1207.
  7. Lee, K.H., S. Lee, H.W. Lee and Y.H. Han (2011), "A next-generation mobility management scheme for an IPv4/IPv6 dual-stack terminal", Journal of the Korea Institute of Information and Communication Engineering, 36(10), 1182-1191.
  8. Na, K., H. Nam and S. AN (2011) "The architecture of surface gateway and its base station for underwater wireless sensor network", 2011 IFIP 9th International Conference on Embedded and Ubiquitous Computing, Melbourne, VIC, Australia, 442-445.
  9. Nakajima, M. and N. Kobayashi (2004) "IPv4/IPv6 translation technology", Fujitsu Science & Technical Journal, 40(1), 159-169.
  10. Nordmark, E. (2000) "Stateless IP/ICMP Translation algorithm (SIIT)", RFC 2765, 1-26.
  11. Park, S.J, S.H. Park, S.K. Kim and C.H. Kim (2010) "Underwater communication and marine sensor network technologies", Communications of the Korean Institute of Information Scientists and Engineers, 28(7), 79-88.
  12. Seong, C.J. and C.H. Kim (2016) "State transition model-based design of wireless gateway types to connect between a sub-network of things and mobile internet and their performance evaluations", Journal of the Korea Society for Simulation, 25(3), 1-14. https://doi.org/10.9709/JKSS.2016.25.3.001
  13. Sha, F., X. Chen, R. Ye, M. Wu, Z. Zhang and W. Cai (2017) "A communication method between IPv4 server and IPv6 network in virtual machine environment", 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)", Wuhan, China, 885-888.
  14. Shanmugaraja, P., S. Vasanthi, D. Balamurugan and S. Chandrasekar (2013) "Design and implementation of transport relay translator and its security mitigations", International Journal of Engineering and Technology (IJET), 5(4), 3439-3442.
  15. Shin, D.H. and C.H. Kim (2016) "Sensor Network System for Littoral Sea Cage Culture Monitoring", KIPS Transactions on Computer and Communication Systems, 5(9), 247-260. https://doi.org/10.3745/KTCCS.2016.5.9.247
  16. Soliman, H. (2009) "Mobile IPv6 Support for Dual Stack Hosts and Routers", RFC 5555, 1-41.
  17. Steffann, S, I.V. Beijnum, R.V. Rein (2013) "A comparison of IPv6-over-IPv4 tunnel mechanisms", RFC 7059, 1-41.
  18. Tsirtsis, G. and P. Srisuresh (2000) "Network Address Translation - Prorocol Translation (NAT-PT)", RFC 2766, 1-21.
  19. TTAK.KO-06.0453 (2017) Requirements for Interconnection between Terrestrial RF-based Communication Network an Underwater Communication Network, TTA Standard, Telecommunication Technology Association.
  20. Yu, S. and E.E. Carpenter (2012) "Measuring IPv4-IPv6 translation techniques", Technical Report 2012-01, Dept. of Computer Science, The University of Auckland.