Figure 1. Spatial location of PM Monitoring Stations(MS) in Seoul
Figure 2. Research flow chart.
Figure 3. PM10 distribution map in 2018 across Seoul. (a) Jan, (b) Feb, (c) Mar, (d) Apr
Figure 4. PM2.5 distribution map in 2018 across Seoul. (a) Jan, (b) Feb, (c) Mar, (d) Apr
Figure 5. PM measurement value by 39 monitoring stations in 2018 across Seoul. (a) Jan, (b) Feb, (c) Mar, (d) Apr
Figure 6. PM10 - PM2.5 distribution map in 2018 across Seoul. (a) Jan, (b )Feb, (c) Mar, (d) Apr
Figure 7. PM10-PM2.5/PM10 distribution map.
Figure 8. PM2.5/PM10 distribution map.
References
- Aman T, Preetvanti S. 2013. Applying Kriging Approach on Pollution Data Using GIS Software. International Journal of Environment Engineering and Management. 4(3): 185-190.
-
Chang H, Hu X, Liu Y. 2014. Calibrating MODIS aerosol optical depth for predicting daily
$PM_{2.5}$ concentrations via statistical downscaling. J Expo Sci Environ Epidemiol. 24(4): 398-404. https://doi.org/10.1038/jes.2013.90 - Cole B, Roman J, Rao MB, Grace L, Ryan P. 2017. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos Environ. 2(151): 1-11.
- Dilip K, Sabasan M, Das A, Vinithkumar NV, Kirubagaran. R. 2011. Evaluation of Interpolation Technique for Air Quality Parameters in Port Blair, India. Universal Journal of Environmental Research and Technology. 1(3): 301-310.
-
Ham JY, Lee HJ, Cha JW, Ryoo SB. 2017. Potential Source of
$PM_{10}$ ,$PM_{2.5}$ , and OC and EC in Seoul During Spring 2016 Atmosphere. Korean Meteorological Society. 27(1): 41-54. [Korean Literature] -
Hooyberghs J, Mensink C, Dumont G, Fierens F, Brasseur O. 2005 A neural network forecast for daily average
$PM_{10}$ concentrations in Belgium, Atmospheric Environment. 39(18): 3279-3289. https://doi.org/10.1016/j.atmosenv.2005.01.050 -
Kim JC. 2013. Characteristics of Particle Size Distribution of
$PM_{10}$ by Asian Dust. The Korean Society for Environmental Analysis. 16(4): 266-271. [Korean Literature] - Mats R, Francesco F, Massimo S, Carlo A, Perucci. 2008. Comparison of regression models with land-use and emissions data to predict the spatial distribution of trafficrelated air pollution in Rome. Journal of Exposure Science and Environmental Epidemiology. 18(2): 192-199. https://doi.org/10.1038/sj.jes.7500571
-
Seo YH, Ku MS, Choi JW, Kim KM, Kim SM, Sul KH, Jo HJ, Kim SJ, Kim KH. 2015. Characteristics of
$PM_{2.5}$ Emission and Distribution in a Highly Commercialized Area in Seoul, Korea. Journal of Korean Society for Atmospheric Environment. 31(2): 97-104. [Korean Literature] https://doi.org/10.5572/KOSAE.2015.31.2.097 -
Qian D, Itai K, Petros K, Alexei L, Yujie W, Joel S. 2016. Assessing
$PM_{2.5}$ exposures with high spatiotemporal resolution across the Continental United States, Environ Sci Technol, 50(9): 4712-4721. https://doi.org/10.1021/acs.est.5b06121