Figure 1. Showing survey point of plants adaptable to climate change in the Korean Peninsula
Figure 2. Box plots for assessments of Ensemble Models (Area Under the Curve(AUC), True Skill Statistic(TSS))
Figure 3. Potential species richness map under current climate conditions. (The red line on the map is mountain area in the national park)
Figure 4. Average value of potential species richness under current and future climate conditions in South Korea and inside the national park.
Figure 5. Average value of potential species richness without dispersal under current and future climate conditions in South Korea and inside the national park.
Table 3. Average value of potential species richness in South Korea and inside the national park.
Figure 6. Potential species richness map by three kinds of plant characteristics under current climate conditions. (The red line on the map is mountain area in the national park)
Figure 7. Potential species richness map considering future climate conditions (The red line on the map is mountain area in the national park)
Figure 8. Potential species richness map considering future climate conditions (The red line on the map is mountain area in the national park)
Table 1. The list of species used for species richness modeling
Table 1. Continue
Table 1. Continue
Table 2. Bioclimatic variables used for Species Distribution Models of 89 each species (Shin et al. 2018)
Table 4. Average value of potential species richness without dispersal in South Korea and inside the national park.
References
- Algar AC, Kharouba HM, Young ER, Kerr JT. 2009. Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography. 32: 22-33. https://doi.org/10.1111/j.1600-0587.2009.05832.x
- Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of applied ecology 43(6): 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
- Araujo MB, Pearson RG, Thuiller W, Erhard M. 2005. Validation of species-climate impact models under climate change. Global Change Biol. 11,1504-1513. https://doi.org/10.1111/j.1365-2486.2005.01000.x
- Araujo MB, Thuiller W, Pearson RG. 2006. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33: 1712-1728. https://doi.org/10.1111/j.1365-2699.2006.01482.x
- Attorre F, De Sanctis M, Francesconi F, Bruno F. 2007. Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. International journal of climatology. 27(13): 1825-1843. https://doi.org/10.1002/joc.1495
- Barry S & Elith J. 2006. Error and uncertainty in habitat models. Journal of Applied Ecology. 43(3): 413-423. https://doi.org/10.1111/j.1365-2664.2006.01136.x
- Cornell HV. 1999. Unsaturation and regional influences on species richness in ecological communities: a review of the evidence. Ecoscience. 6: 303-315. https://doi.org/10.1080/11956860.1999.11682532
- Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat JP, Guisan A. 2011. Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions. 17(6): 1122-1131. https://doi.org/10.1111/j.1472-4642.2011.00792.x
- Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
- Franklin J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press.
- Gioia P & Pigott JP. 2000. Biodiversity assessment: a case study in predicting richness from the potential distributions of plant species in the forests of southwestern Australia. Journal of Biogeography. 27: 1065-1078. https://doi.org/10.1046/j.1365-2699.2000.00461.x
- Golicher DJ, Cayuela L, Newton AC. 2012. Effects of climate change on the potential species richness of Mesoamerican forests. Biotropica, 44(3), 284-293. https://doi.org/10.1111/j.1744-7429.2011.00815.x
- Gotelli NJ, Colwell RK. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology letters. 4(4): 379-391. https://doi.org/10.1046/j.1461-0248.2001.00230.x
- Grinnell J. 1904. The origin and distribution of the chest-nut-backed chickadee. The Auk. 21(3): 364-382. https://doi.org/10.2307/4070199
- Guisan A, Rahbek C. 2011. SESAM-a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography. 38(8): 1433-1444. https://doi.org/10.1111/j.1365-2699.2011.02550.x
- Guisan A, Theurillat, JP. 2000. Equilibrium modeling of alpine plant distribution: how far can we go?. Phytocoenologia. 30: 353-384. https://doi.org/10.1127/phyto/30/2000/353
- Guisan A, Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters. 8: 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
- Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. https://doi.org/10.1002/joc.1276
- IPCC. 2001. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK.
- IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
- Jung, DJ, Kang KH, Heo J, Kim C, Kim SH, Lee JB. 2010. Mapping for Biodiversity Using National Forest Inventory Data and GIS. J. Environ. Impact Assess. 19(6): 573-581. [Korea Literature]
- Kang HI & Kang KS. 2018. Evaluation Criteria of Biodiversity in Ecosystem Protected Areas -In Mt. Jiri and Mt. Bukhan National Parks-. J. Environ. Impact Assess. 27(2): 114-123. [Korea Literature] https://doi.org/10.14249/EIA.2018.27.2.114
- Kim J, Kwon H, Seo C, Kim M. 2014. A nationwide analysis of mammalian biodiversity hotspots in South Korea. J. Environ. Impact Assess. 23(6): 453-465. [Korea Literature] https://doi.org/10.14249/eia.2014.23.6.453
- Kong WS. 2007. Biogeography of Korean Plants. Seoul. GEOBOOK. 336 page. [Korea Literature]
- Koo KA, Kong WS, Nibbelink NP, Hopkinson CS, Lee JH. 2015. Potential effects of climate change on the distribution of cold-tolerant evergreen broadleaved woody plants in the korean peninsula. PloS one. 10(8): e0134043. https://doi.org/10.1371/journal.pone.0134043
- Koo KA, Park SU, Hong S, Jang I, Seo C. 2018. Future distributions of warm-adapted evergreen trees, Neolitsea sericea and Camellia japonica under climate change: ensemble forecasts and predictive uncertainty. Ecological Research, 33(2), 313-325. https://doi.org/10.1007/s11284-017-1535-3
- Koo KA, Park SU, Kong WS, Hong S, Jang I, Seo C. 2017. Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties. Ecological Modelling 353: 17-27. https://doi.org/10.1016/j.ecolmodel.2016.10.007
- Korea Meteorological Administration. 2011. Case Studies to Understand and Take Advantage of Climate Change Scenarios. 14pp. [Korea Literature]
- Korea National Arboretum. 2004. Distribution maps of vascular plants of Korean peninsula I. South coast province. Korea National Arboretum, Pocheon. [Korea Literature]
- Korea National Arboretum. 2005. Distribution maps of vascular plants of Korean peninsula II. South province (Jeollado & Jirisan). Korea National Arboretum, Pocheon. [Korea Literature]
- Korea National Arboretum. 2006. Distribution maps of vascular plants of Korean peninsula III. Central & South province (Chungcheong-do). Korea National Arboretum, Pocheon. [Korea Literature]
- Korea National Arboretum. 2007. Distribution maps of vascular plants of Korean peninsula IV. Central & south province (Gyeongsangbuk-do). Korea National Arboretum, Pocheon. [Korea Literature]
- Korea National Arboretum. 2008. Distribution maps of vascular plants of Korean peninsula V. Central province (Geonggido). Korea National Arboretum, Pocheon. [Korea Literature]
- Korea National Arboretum. 2009. Distribution maps of vascular plants of Korean peninsula VI. Central province (Gangwondo). Korea National Arboretum, Pocheon. [Korea Literature]
- Korea National Arboretum. 2010a. 300 Target Plants Adaptable to Climate Chage in the Korean Peninsula. Korea National Arboretum, Pocheon. [Korea Literature]
- Korea National Arboretum. 2010b. Distribution maps of vascular plants of Korean peninsula VII. South province (Gyeongsangnam-do) and Ulleung-do province. Korea National Arboretum, Pocheon. [Korea Literature]
- Korea National Arboretum. 2010c. Distribution maps of vascular plants of Korean peninsula VIII. Jeju-do province. Korea National Arboretum, Pocheon. [Korea Literature]
- Korea National Arboretum. 2011. Distribution maps of vascular plants of Korean peninsula IX. West & South coast province. Korea National Arboretum, Pocheon. [Korea Literature]
- Kwon H, Seo C, Park CH. 2012. Development of Species Distribution Models and Evaluation of Species Richness in Jirisan region. Journal of korean society for geospatial information system. 20(3): 11-18. [Korea Literature] https://doi.org/10.7319/kogsis.2012.20.3.011
- Kwon HS. 2014. Applying Ensemble Model for Identifying Uncertainty in the Species Distribution Models. Journal of the Korean Society for Geospatial Information System 22(4): 47-52. [Korea Literature]
- Lee WT, Yim YJ. 2002. Plant Geography. Chuncheon. 414 pages. [Korea Literature]
- Liu C, Berry P, Dawson T, Pearson R. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385-393. https://doi.org/10.1111/j.0906-7590.2005.03957.x
- Lobo JM, Nez Valverde AJ, Real R. 2008. AUC: A misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr. 17(2):145-151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
- Margalef DR. 1958. Information theory in ecology. International Journal of General Systems. 3: 36-71.
- Mateo-Tomas P, Olea PP, Sanchez-Barbudo IS, Mateo R. 2012. Alleviating human-wildlife conflicts: identifying the causes and mapping the risk of illegal poisoning of wild fauna. Journal of Applied Ecology, 49(2), 376-385. https://doi.org/10.1111/j.1365-2664.2012.02119.x
- May RM. 1988. How many species are there on earth?. Science. 241(4872): 1441-1449. https://doi.org/10.1126/science.241.4872.1441
- McClean CJ, Lovett JC, Kuper W, Hannah L, Henning Sommer J, Barthlott W, Termansen M, Smith GF, Tokumine S, Taplin JRD. 2005. African plant diversity and climate change. Annals of the Missouri Botanical Garden 922:139-152.
- Ministry of Environment. 2012. The Biodiversity of Korea. 132 pages. [Korea Literature]
- National Geographic Information Institute. 2014. The national atlas of Korea 1st Edition. Physical Geography, Suwon. 252pp. [Korea Literature]
- National Geographic Information Institute. 2016. The national atlas of Korea 2st Edition. Physical Geography, Suwon. 243pp. [Korea Literature]
- Nogues-Bravo D, Araujo MB, Romdal T, Rahbek C. 2008. Scale effects and human impact on the elevational species richness gradients. Nature. 453: 216-219. https://doi.org/10.1038/nature06812
- Ortega-huerta MA & PETERSON AT. 2004. Modelling spatial patterns of biodiversity for conservation prioritization in north-eastern Mexico. Divers. Distrib. 10(1): 39-54. https://doi.org/10.1111/j.1472-4642.2004.00051.x
- Park HS, Choi GW. 2014. Applicability Evaluation of RCP Climate Change Scenarios in the Complex Coastal Regions. Korean Reviw of Crisis & Emergency Management. 10(2): 215-230. [Korea Literature]
- Park SU, Koo KA, Seo C, Hong S. 2017. Climate-related range shifts of Ardisia japonica in the Korean Peninsula: a role of dispersal capacity. Journal of Ecology and Environment, 41(1): 38. https://doi.org/10.1186/s41610-017-0055-y
- Park SU, Koo KA, Seo C, Kong WS. 2016. Potential Impact of Climate Change on Distribution of Hedera rhombea in the Korean Peninsula. The Korean Society of Climate Change Reasearch, 7(3), 325-334. [Korea Literature]
- Parviainen M, Marmion M, Luoto M, Thuiller W, Heikkinen RK. 2009. Using summed individual species models and state-of-theart modelling techniques to identify threatened plant species hotspots. Biological Conservation. 142: 2501-2509. https://doi.org/10.1016/j.biocon.2009.05.030
- Pearson RG, Dawson TP. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope models useful? Global Ecology and Biogeography 12: 361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
- Pearson RG, Thuiller W, Araujo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC. 2006. Model-based uncertainty in species range prediction. Journal of Biogeography 2006:1-8.
- Pearson RG. 2007. Species' distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History, 50.
- Pielou EC. 1966. Shannon's formula as a measure of specific diversity: Its use and misuse. The American Naturalist. 100(914): 463-365. https://doi.org/10.1086/282439
- Pielou EC. 1975. Ecological diversity. John Wiley & Sons Inc. pp. 165.
- Schimper AFW. 1903. Plant-Geography upon a physiological basis. Trasl. WR fisher. Oxford, Clarendon Press.
- Secretariat of the Convention on Biological Diversity. 2014. Global Biodiversity Outlook 4. Montreal, 155 pages. [Korea Literature]
- Shin MS, Jang RI, Seo CW, Lee MW. 2015. A Comparative Study on Species Richness and Land Suitability Assessment ; Focused on city in Boryeong. J. Environ. Impact Assess. 24(1): 35-50. [Korea Literature] https://doi.org/10.14249/eia.2015.24.1.35
- Shin MS, Seo C, Park SU, Hong S, Kim JY, Jeon JY, Lee M. 2018. Prediction of Potential Habitat of Japanese evergreen oak (Quercus acuta Thunb.) Considering Dispersal Ability Under Climate Change. J. Environ. Impact Assess. 27(3): 291-306. [Korea Literature] https://doi.org/10.14249/EIA.2018.27.3.291
- Sinclair SJ, White MD, Newell GR. 2010. How useful are species distribution models for managing biodiversity under future climates?. Ecology and Society, 15(1).
- Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Sigueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OS, Williams SE. 2004. Extinction risk from climate change. Nature 427: 145-148. https://doi.org/10.1038/nature02121
- Thuiller W, Brotons L, Araujo MB, Lavorel S. 2004. Effects of restricting environmental range data to project current and future species distributions. Ecography 27:165-172. https://doi.org/10.1111/j.0906-7590.2004.03673.x
- Thuiller W, Lafourcade B, Engler R, Arajo MB. 2009. Biomod-a platform for ensemble forecasting of species distributions. Ecography 32(3):369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
- Urquiza-haas T, Peres CA, Dolman PM. 2009. Regional scale effects of human density and forest disturbance on large-bodied vertebrates throughout the Yucatan Peninsula, Mexico. Biol. Conserv. 142:134-148. https://doi.org/10.1016/j.biocon.2008.10.007
- Usher MB. 1996. Wildlife conservation evaluation: Attributes criteria and values. Chapman & Hall. pp. 3-44.
- Wenger SJ, Som NA, Dauwalter DC, Isaak DJ, Neville HM, Luce CH, Rieman BE. 2013. Probabilistic accounting of uncertainty in forecasts of species distributions under climate change. Global Change Biology. 19(11): 3343-3354. https://doi.org/10.1111/gcb.12294
- Whittaker, RH. 1972. Evolution and measurement of species diversity. Taxon. 213-251.
- Williams SE, Bolitho EE, Fox S. 2003. Climate change in Australian tropical rainforests and impending environmental catastrophe. Proceedings of the Royal Society of London B 270:1887-1892. https://doi.org/10.1098/rspb.2003.2464
Cited by
- Assessment of the Spatial Invasion Risk of Intentionally Introduced Alien Plant Species (IIAPS) under Environmental Change in South Korea vol.10, pp.11, 2018, https://doi.org/10.3390/biology10111169