DOI QR코드

DOI QR Code

Prediction of Potential Species Richness of Plants Adaptable to Climate Change in the Korean Peninsula

한반도 기후변화 적응 대상 식물 종풍부도 변화 예측 연구

  • Received : 2018.09.11
  • Accepted : 2018.12.05
  • Published : 2018.12.31

Abstract

This study was designed to predict the changes in species richness of plants under the climate change in South Korea. The target species were selected based on the Plants Adaptable to Climate Change in the Korean Peninsula. Altogether, 89 species including 23 native plants, 30 northern plants, and 36 southern plants. We used the Species Distribution Model to predict the potential habitat of individual species under the climate change. We applied ten single-model algorithms and the pre-evaluation weighted ensemble method. And then, species richness was derived from the results of individual species. Two representative concentration pathways (RCP 4.5 and RCP 8.5) were used to simulate the species richness of plants in 2050 and 2070. The current species richness was predicted to be high in the national parks located in the Baekdudaegan mountain range in Gangwon Province and islands of the South Sea. The future species richness was predicted to be lower in the national park and the Baekdudaegan mountain range in Gangwon Province and to be higher for southern coastal regions. The average value of the current species richness showed that the national park area was higher than the whole area of South Korea. However, predicted species richness were not the difference between the national park area and the whole area of South Korea. The difference between current and future species richness of plants could be the disappearance of a large number of native and northern plants from South Korea. The additional reason could be the expansion of potential habitat of southern plants under climate change. However, if species dispersal to a suitable habitat was not achieved, the species richness will be reduced drastically. The results were different depending on whether species were dispersed or not. This study will be useful for the conservation planning, establishment of the protected area, restoration of biological species and strategies for adaptation of climate change.

본 연구는 한반도 기후변화 적응 대상식물을 대상으로 기후변화에 따른 종풍부도 변화를 예측해 보고자 하였다. 대상종은 한반도 기후변화 적응 대상식물 중에서 특산식물 23종, 북방계식물 30종 그리고 남방계식물 36종으로 총 89종을 선정하였다. 기후변화에 따른 개별 종의 잠재서식지를 예측하여 합산하는 방식으로 종풍부도 변화를 예측하였다. 개별 종의 잠재서식지는 10개의 종분포모형 알고리즘을 함께 고려하는 앙상블모형을 구축하였다. 미래 예측 시기는 기후변화 시나리오 RCP4.5와 RCP8.5를 선정하여 2050년과 2070년을 예측하였다. 현재의 종풍부도는 국립공원, 강원도 백두대간 지역 그리고 남해 도서지역을 중심으로 높게 나타났다. 미래 예측 결과, 기존에 높은 종풍부도를 보였던 국립공원과 강원도 백두대간 지역은 낮아졌고 남해안 내륙지역은 보다 더 높아졌다. 종풍부도의 평균값을 비교해 보면 현재 기준으로 국립공원 지역이 남한 전체지역보다 높으면서 큰 차이를 보였다. 하지만 기후변화에 따라서 국립공원 지역과 남한 전체지역의 차이가 줄어들었다. 특산식물과 북방계식물의 다수가 남한지역에서 사라지고 남방계식물이 북상하면서 이와 같은 결과를 보였다. 하지만 적합한 서식지로 이주가 이루어지지 않으면 종풍부도가 급격하게 감소하였다. 분산가능성의 가정에 따라 결과가 다르게 나타났다. 본 연구의 결과는 보전 계획 수립, 보호 지역 설정, 생물종 복원 그리고 기후변화 대응 전략 및 관리 방안 등에 활용될 수 있을 것으로 판단된다.

Keywords

HOPHBL_2018_v27n6_562_f0002.png 이미지

Figure 1. Showing survey point of plants adaptable to climate change in the Korean Peninsula

HOPHBL_2018_v27n6_562_f0003.png 이미지

Figure 2. Box plots for assessments of Ensemble Models (Area Under the Curve(AUC), True Skill Statistic(TSS))

HOPHBL_2018_v27n6_562_f0004.png 이미지

Figure 3. Potential species richness map under current climate conditions. (The red line on the map is mountain area in the national park)

HOPHBL_2018_v27n6_562_f0005.png 이미지

Figure 4. Average value of potential species richness under current and future climate conditions in South Korea and inside the national park.

HOPHBL_2018_v27n6_562_f0006.png 이미지

Figure 5. Average value of potential species richness without dispersal under current and future climate conditions in South Korea and inside the national park.

Table 3. Average value of potential species richness in South Korea and inside the national park.

HOPHBL_2018_v27n6_562_f0007.png 이미지

HOPHBL_2018_v27n6_562_f0008.png 이미지

Figure 6. Potential species richness map by three kinds of plant characteristics under current climate conditions. (The red line on the map is mountain area in the national park)

HOPHBL_2018_v27n6_562_f0009.png 이미지

Figure 7. Potential species richness map considering future climate conditions (The red line on the map is mountain area in the national park)

HOPHBL_2018_v27n6_562_f0010.png 이미지

Figure 8. Potential species richness map considering future climate conditions (The red line on the map is mountain area in the national park)

Table 1. The list of species used for species richness modeling

HOPHBL_2018_v27n6_562_t0001.png 이미지

Table 1. Continue

HOPHBL_2018_v27n6_562_t0002.png 이미지

Table 1. Continue

HOPHBL_2018_v27n6_562_t0003.png 이미지

Table 2. Bioclimatic variables used for Species Distribution Models of 89 each species (Shin et al. 2018)

HOPHBL_2018_v27n6_562_t0004.png 이미지

Table 4. Average value of potential species richness without dispersal in South Korea and inside the national park.

HOPHBL_2018_v27n6_562_t0006.png 이미지

References

  1. Algar AC, Kharouba HM, Young ER, Kerr JT. 2009. Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography. 32: 22-33. https://doi.org/10.1111/j.1600-0587.2009.05832.x
  2. Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of applied ecology 43(6): 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
  3. Araujo MB, Pearson RG, Thuiller W, Erhard M. 2005. Validation of species-climate impact models under climate change. Global Change Biol. 11,1504-1513. https://doi.org/10.1111/j.1365-2486.2005.01000.x
  4. Araujo MB, Thuiller W, Pearson RG. 2006. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33: 1712-1728. https://doi.org/10.1111/j.1365-2699.2006.01482.x
  5. Attorre F, De Sanctis M, Francesconi F, Bruno F. 2007. Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. International journal of climatology. 27(13): 1825-1843. https://doi.org/10.1002/joc.1495
  6. Barry S & Elith J. 2006. Error and uncertainty in habitat models. Journal of Applied Ecology. 43(3): 413-423. https://doi.org/10.1111/j.1365-2664.2006.01136.x
  7. Cornell HV. 1999. Unsaturation and regional influences on species richness in ecological communities: a review of the evidence. Ecoscience. 6: 303-315. https://doi.org/10.1080/11956860.1999.11682532
  8. Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat JP, Guisan A. 2011. Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Diversity and Distributions. 17(6): 1122-1131. https://doi.org/10.1111/j.1472-4642.2011.00792.x
  9. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  10. Franklin J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press.
  11. Gioia P & Pigott JP. 2000. Biodiversity assessment: a case study in predicting richness from the potential distributions of plant species in the forests of southwestern Australia. Journal of Biogeography. 27: 1065-1078. https://doi.org/10.1046/j.1365-2699.2000.00461.x
  12. Golicher DJ, Cayuela L, Newton AC. 2012. Effects of climate change on the potential species richness of Mesoamerican forests. Biotropica, 44(3), 284-293. https://doi.org/10.1111/j.1744-7429.2011.00815.x
  13. Gotelli NJ, Colwell RK. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology letters. 4(4): 379-391. https://doi.org/10.1046/j.1461-0248.2001.00230.x
  14. Grinnell J. 1904. The origin and distribution of the chest-nut-backed chickadee. The Auk. 21(3): 364-382. https://doi.org/10.2307/4070199
  15. Guisan A, Rahbek C. 2011. SESAM-a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography. 38(8): 1433-1444. https://doi.org/10.1111/j.1365-2699.2011.02550.x
  16. Guisan A, Theurillat, JP. 2000. Equilibrium modeling of alpine plant distribution: how far can we go?. Phytocoenologia. 30: 353-384. https://doi.org/10.1127/phyto/30/2000/353
  17. Guisan A, Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters. 8: 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
  18. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. https://doi.org/10.1002/joc.1276
  19. IPCC. 2001. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK.
  20. IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  21. Jung, DJ, Kang KH, Heo J, Kim C, Kim SH, Lee JB. 2010. Mapping for Biodiversity Using National Forest Inventory Data and GIS. J. Environ. Impact Assess. 19(6): 573-581. [Korea Literature]
  22. Kang HI & Kang KS. 2018. Evaluation Criteria of Biodiversity in Ecosystem Protected Areas -In Mt. Jiri and Mt. Bukhan National Parks-. J. Environ. Impact Assess. 27(2): 114-123. [Korea Literature] https://doi.org/10.14249/EIA.2018.27.2.114
  23. Kim J, Kwon H, Seo C, Kim M. 2014. A nationwide analysis of mammalian biodiversity hotspots in South Korea. J. Environ. Impact Assess. 23(6): 453-465. [Korea Literature] https://doi.org/10.14249/eia.2014.23.6.453
  24. Kong WS. 2007. Biogeography of Korean Plants. Seoul. GEOBOOK. 336 page. [Korea Literature]
  25. Koo KA, Kong WS, Nibbelink NP, Hopkinson CS, Lee JH. 2015. Potential effects of climate change on the distribution of cold-tolerant evergreen broadleaved woody plants in the korean peninsula. PloS one. 10(8): e0134043. https://doi.org/10.1371/journal.pone.0134043
  26. Koo KA, Park SU, Hong S, Jang I, Seo C. 2018. Future distributions of warm-adapted evergreen trees, Neolitsea sericea and Camellia japonica under climate change: ensemble forecasts and predictive uncertainty. Ecological Research, 33(2), 313-325. https://doi.org/10.1007/s11284-017-1535-3
  27. Koo KA, Park SU, Kong WS, Hong S, Jang I, Seo C. 2017. Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties. Ecological Modelling 353: 17-27. https://doi.org/10.1016/j.ecolmodel.2016.10.007
  28. Korea Meteorological Administration. 2011. Case Studies to Understand and Take Advantage of Climate Change Scenarios. 14pp. [Korea Literature]
  29. Korea National Arboretum. 2004. Distribution maps of vascular plants of Korean peninsula I. South coast province. Korea National Arboretum, Pocheon. [Korea Literature]
  30. Korea National Arboretum. 2005. Distribution maps of vascular plants of Korean peninsula II. South province (Jeollado & Jirisan). Korea National Arboretum, Pocheon. [Korea Literature]
  31. Korea National Arboretum. 2006. Distribution maps of vascular plants of Korean peninsula III. Central & South province (Chungcheong-do). Korea National Arboretum, Pocheon. [Korea Literature]
  32. Korea National Arboretum. 2007. Distribution maps of vascular plants of Korean peninsula IV. Central & south province (Gyeongsangbuk-do). Korea National Arboretum, Pocheon. [Korea Literature]
  33. Korea National Arboretum. 2008. Distribution maps of vascular plants of Korean peninsula V. Central province (Geonggido). Korea National Arboretum, Pocheon. [Korea Literature]
  34. Korea National Arboretum. 2009. Distribution maps of vascular plants of Korean peninsula VI. Central province (Gangwondo). Korea National Arboretum, Pocheon. [Korea Literature]
  35. Korea National Arboretum. 2010a. 300 Target Plants Adaptable to Climate Chage in the Korean Peninsula. Korea National Arboretum, Pocheon. [Korea Literature]
  36. Korea National Arboretum. 2010b. Distribution maps of vascular plants of Korean peninsula VII. South province (Gyeongsangnam-do) and Ulleung-do province. Korea National Arboretum, Pocheon. [Korea Literature]
  37. Korea National Arboretum. 2010c. Distribution maps of vascular plants of Korean peninsula VIII. Jeju-do province. Korea National Arboretum, Pocheon. [Korea Literature]
  38. Korea National Arboretum. 2011. Distribution maps of vascular plants of Korean peninsula IX. West & South coast province. Korea National Arboretum, Pocheon. [Korea Literature]
  39. Kwon H, Seo C, Park CH. 2012. Development of Species Distribution Models and Evaluation of Species Richness in Jirisan region. Journal of korean society for geospatial information system. 20(3): 11-18. [Korea Literature] https://doi.org/10.7319/kogsis.2012.20.3.011
  40. Kwon HS. 2014. Applying Ensemble Model for Identifying Uncertainty in the Species Distribution Models. Journal of the Korean Society for Geospatial Information System 22(4): 47-52. [Korea Literature]
  41. Lee WT, Yim YJ. 2002. Plant Geography. Chuncheon. 414 pages. [Korea Literature]
  42. Liu C, Berry P, Dawson T, Pearson R. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385-393. https://doi.org/10.1111/j.0906-7590.2005.03957.x
  43. Lobo JM, Nez Valverde AJ, Real R. 2008. AUC: A misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr. 17(2):145-151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
  44. Margalef DR. 1958. Information theory in ecology. International Journal of General Systems. 3: 36-71.
  45. Mateo-Tomas P, Olea PP, Sanchez-Barbudo IS, Mateo R. 2012. Alleviating human-wildlife conflicts: identifying the causes and mapping the risk of illegal poisoning of wild fauna. Journal of Applied Ecology, 49(2), 376-385. https://doi.org/10.1111/j.1365-2664.2012.02119.x
  46. May RM. 1988. How many species are there on earth?. Science. 241(4872): 1441-1449. https://doi.org/10.1126/science.241.4872.1441
  47. McClean CJ, Lovett JC, Kuper W, Hannah L, Henning Sommer J, Barthlott W, Termansen M, Smith GF, Tokumine S, Taplin JRD. 2005. African plant diversity and climate change. Annals of the Missouri Botanical Garden 922:139-152.
  48. Ministry of Environment. 2012. The Biodiversity of Korea. 132 pages. [Korea Literature]
  49. National Geographic Information Institute. 2014. The national atlas of Korea 1st Edition. Physical Geography, Suwon. 252pp. [Korea Literature]
  50. National Geographic Information Institute. 2016. The national atlas of Korea 2st Edition. Physical Geography, Suwon. 243pp. [Korea Literature]
  51. Nogues-Bravo D, Araujo MB, Romdal T, Rahbek C. 2008. Scale effects and human impact on the elevational species richness gradients. Nature. 453: 216-219. https://doi.org/10.1038/nature06812
  52. Ortega-huerta MA & PETERSON AT. 2004. Modelling spatial patterns of biodiversity for conservation prioritization in north-eastern Mexico. Divers. Distrib. 10(1): 39-54. https://doi.org/10.1111/j.1472-4642.2004.00051.x
  53. Park HS, Choi GW. 2014. Applicability Evaluation of RCP Climate Change Scenarios in the Complex Coastal Regions. Korean Reviw of Crisis & Emergency Management. 10(2): 215-230. [Korea Literature]
  54. Park SU, Koo KA, Seo C, Hong S. 2017. Climate-related range shifts of Ardisia japonica in the Korean Peninsula: a role of dispersal capacity. Journal of Ecology and Environment, 41(1): 38. https://doi.org/10.1186/s41610-017-0055-y
  55. Park SU, Koo KA, Seo C, Kong WS. 2016. Potential Impact of Climate Change on Distribution of Hedera rhombea in the Korean Peninsula. The Korean Society of Climate Change Reasearch, 7(3), 325-334. [Korea Literature]
  56. Parviainen M, Marmion M, Luoto M, Thuiller W, Heikkinen RK. 2009. Using summed individual species models and state-of-theart modelling techniques to identify threatened plant species hotspots. Biological Conservation. 142: 2501-2509. https://doi.org/10.1016/j.biocon.2009.05.030
  57. Pearson RG, Dawson TP. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope models useful? Global Ecology and Biogeography 12: 361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
  58. Pearson RG, Thuiller W, Araujo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC. 2006. Model-based uncertainty in species range prediction. Journal of Biogeography 2006:1-8.
  59. Pearson RG. 2007. Species' distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History, 50.
  60. Pielou EC. 1966. Shannon's formula as a measure of specific diversity: Its use and misuse. The American Naturalist. 100(914): 463-365. https://doi.org/10.1086/282439
  61. Pielou EC. 1975. Ecological diversity. John Wiley & Sons Inc. pp. 165.
  62. Schimper AFW. 1903. Plant-Geography upon a physiological basis. Trasl. WR fisher. Oxford, Clarendon Press.
  63. Secretariat of the Convention on Biological Diversity. 2014. Global Biodiversity Outlook 4. Montreal, 155 pages. [Korea Literature]
  64. Shin MS, Jang RI, Seo CW, Lee MW. 2015. A Comparative Study on Species Richness and Land Suitability Assessment ; Focused on city in Boryeong. J. Environ. Impact Assess. 24(1): 35-50. [Korea Literature] https://doi.org/10.14249/eia.2015.24.1.35
  65. Shin MS, Seo C, Park SU, Hong S, Kim JY, Jeon JY, Lee M. 2018. Prediction of Potential Habitat of Japanese evergreen oak (Quercus acuta Thunb.) Considering Dispersal Ability Under Climate Change. J. Environ. Impact Assess. 27(3): 291-306. [Korea Literature] https://doi.org/10.14249/EIA.2018.27.3.291
  66. Sinclair SJ, White MD, Newell GR. 2010. How useful are species distribution models for managing biodiversity under future climates?. Ecology and Society, 15(1).
  67. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Sigueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OS, Williams SE. 2004. Extinction risk from climate change. Nature 427: 145-148. https://doi.org/10.1038/nature02121
  68. Thuiller W, Brotons L, Araujo MB, Lavorel S. 2004. Effects of restricting environmental range data to project current and future species distributions. Ecography 27:165-172. https://doi.org/10.1111/j.0906-7590.2004.03673.x
  69. Thuiller W, Lafourcade B, Engler R, Arajo MB. 2009. Biomod-a platform for ensemble forecasting of species distributions. Ecography 32(3):369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
  70. Urquiza-haas T, Peres CA, Dolman PM. 2009. Regional scale effects of human density and forest disturbance on large-bodied vertebrates throughout the Yucatan Peninsula, Mexico. Biol. Conserv. 142:134-148. https://doi.org/10.1016/j.biocon.2008.10.007
  71. Usher MB. 1996. Wildlife conservation evaluation: Attributes criteria and values. Chapman & Hall. pp. 3-44.
  72. Wenger SJ, Som NA, Dauwalter DC, Isaak DJ, Neville HM, Luce CH, Rieman BE. 2013. Probabilistic accounting of uncertainty in forecasts of species distributions under climate change. Global Change Biology. 19(11): 3343-3354. https://doi.org/10.1111/gcb.12294
  73. Whittaker, RH. 1972. Evolution and measurement of species diversity. Taxon. 213-251.
  74. Williams SE, Bolitho EE, Fox S. 2003. Climate change in Australian tropical rainforests and impending environmental catastrophe. Proceedings of the Royal Society of London B 270:1887-1892. https://doi.org/10.1098/rspb.2003.2464

Cited by

  1. Assessment of the Spatial Invasion Risk of Intentionally Introduced Alien Plant Species (IIAPS) under Environmental Change in South Korea vol.10, pp.11, 2018, https://doi.org/10.3390/biology10111169