DOI QR코드

DOI QR Code

Summability Results for Mapping Matrices

  • Yoo, Won Sok (Department of Applied Mathematics, Kumoh National Institute of Technology)
  • Received : 2018.01.26
  • Accepted : 2018.02.19
  • Published : 2018.03.30

Abstract

For topological vector spaces X and Y, let $F_0(X,Y)=\{f{\in}Y^X:f(0)=0\}$. Then it is an extremely large family and the family of linear operators is a very small subfamily of $F_0(X,Y)$. In this paper, we establish the characterizations of $F_0(X,Y)$-matrix families (${l^{\infty}(X)$, ${l^{\infty}(Y)$), ($c_0(X)$, $l^{\infty}(Y)$) and ($c_0(X)$, $l^{\infty}(Y)$).

Keywords

Acknowledgement

Supported by : Kumoh National Institute of Technology

References

  1. R. Li, L. Li, and M. K. Shin, "Summability results for operator matrices on topological vector spaces", Sci. China Ser. A Math., Vol. 44, pp. 1300-1311, 2001. https://doi.org/10.1007/BF02877019
  2. R. Li, M. K. Shin, and C. Swartz, "Operator matrices on topological vector spaces", J. Math. Anal. Appl., Vol. 274, pp. 645-658, 2002. https://doi.org/10.1016/S0022-247X(02)00322-0
  3. W. S. Yoo, "The characterizations of matrix families ($c_0(X),l^{\infty}(Y)$) and ($l^{\infty}(X),l^{\infty}(Y)$)", Applied Mathematical Sciences, Vol. 10, pp. 653-659, 2016. https://doi.org/10.12988/ams.2016.512744
  4. I. J. Maddox, "Infinite matrices of operators", ed. A. Dold and B. Eckmann, New York: Springer-Verlag Berlin-Heidelberg, 1980.
  5. R. Li and C. Swartz, "A nonlinear Schur theorem", Acta Scientiarum Mathematicarum, Vol. 58, pp. 497-508, 1993.
  6. S. M. Khaleelulla, "Counterexamples in topological vector spaces", ed. A. Dold and B. Eckmann, New York: Springer-Verlag Berlin-Heidelberg, 1982.
  7. R. L. Li and Q. Y. Bu, "Locally convex spaces containing no copy of $c_0$", J. Math. Anal. Appl., Vol. 172, pp. 205-211, 1993. https://doi.org/10.1006/jmaa.1993.1017