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Summability Results for Mapping Matrices

Won Sok Yoo’

Abstract

For topological vector spaces X and Y, let F, (X, Y) = {f € ¥v¥: f(0)=0}. Thenitis an extremely large family and the
family of linear operators is a very small subfamily of F, (X, ¥). In this paper, we establish the characterizations of F, (X, Y)
- matrix families (I (X), I (Y)), (¢,(X), ¢,(¥)) and (¢, (X), I (Y)).

Keywords: Summability, F, (X, ¥)-Matrix Family, Braked Space.

Mathematics Subject Classification: 40A05, 40C05, 54A20

1. Introduction

For topological vector spaces X and Y, F (X, Y) =
{f€v": £(0) = 0} is an extremely large family and the
family of linear operators is a very small subfamily of
Fo (X, 7).

For sequence families A(X) ¢ XV, u(y) < vV
and mappings f,; EF, (X, ¥)(i, jEN), the matrix

(fi.u),v,chE(/\(X).,u(Yj) means  that ifﬂf(wf)

converges whenever iE€N, (z;) EA(X) and
{_};fij<zj>}i:1 € (1), V(z)) EAX).

Let (X)) = {(xj) e xN . {.LJ} is bounded} and
¢ (X) = {(xj) e xN . xjﬁO}.

In 2001 and 2002, a mapping family Q#,(X;Y)
including all linear operators and many non-linear
mappings were defined in the literature™? which gave
the characterization of QH,(X,Y) - matrix families
(6(X), ¢,(Y)), (¢X),1"(¥) and (I*(X), 1" (V).
However, QH,(X,Y) is also a small subfamily of
F,(X,Y) and so the quality lower of the results in the
literature"? is lover than Theorem B!,

If Y= (¥, II-1I) is a seminormed space and {f;} <
F(XY), then for nEN and BcX let

R” = (f!17f!1+1’f77,+27 .“) and
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m—1

E fn+k(l'j)
E=0

IR, = SUpcs o) s = swp

S|

Obviously, | &, | ,=sup { | k;Aan(;rj) |:acN

finite, {x;} < B} whenever 0€B. If both X and Y are
seminormed, then || R, ||= | R, | exilal <1} is just
the group normof (f,), . ,, 4

For f,,€F,(X.Y), i, jEN, R,
(fm? Jiner finvo o).

In the paper’, we have established the
characterizations of F,(X.Y)- matrix families
(1" (X), ¢, (¥)) and (I” (X), I (V) as follows.

m = n,{z;}C B ‘

denotes the sequence

Proposition 1. f €F (X,Y) for i,jEN. Then
(f;)i jen € 0 (X), ¢ (V)) if and only if
(1) lim, f,;(x) =0, VjEN, z EX and

(2) for every bounded BC X, 21 fi;(x;) converges
e

uniformly with respect to both i € N and {z;}c B.

Proposition 2. Let ¥ be a Banach space and f;; &
Fo(X. ), vi,j € N. Then (f,,); -y € (7 (X), q(¥)
if and only if

(1) lim,-fij(x) =0, VjEN, z€Xand

(2) for every bounded B C X,

I 7, I ,= 0

If, in addition, X is seminormed and each f,; : x>V
is linear, then (f,;), ;c y € (™ (X), ¢ (1)) if and only if
(1) and

llmm Supi& N

—51 -
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(3) limmsupz'EN ” ‘@m H

Proposition 3. f, €F (X.Y), Vi, jEN. Then the
following (a), (b) and (c) are equivalent.
@ (f:; l,eNe(z (X), I (V).
() (s ij i.jFN E(1*(X), ¢(Y), V(s;)Eq =
{(S,v)ECN i s, ﬁO}.

© @ {£, )7
(5) for every bounded Bc X and (s;)€Eq),

is bounded, Vj&N, z =X and

)

Es fi;(z;) converges uniformly with respect to both
“

i€N and {ZL‘j} c B
Proposition 4. If ¥'is seminormed and f,; € F, (X, ),
Vi, jEN, then (f,;), ,« v € (1 (X), I” (V) if and only if
@) {f,(2)},~ isbounded, Vj=N, z X,

(6) Ef,]

@) for every (z;) €17 (X) and integer sequences
1y <dy < - yomy <my <my <ny < -y

x;) converges, ViEN, (z;) €17 (X) and

ny,

PIEFCH

j=my

SUPie N

‘<+oo.

In this paper we would like to give the additional
characterizations of (I (X), I (Y)), (¢,(X), ¢,(¥)) and
(¢, (X), 1 (¥)) for matrices in F, (X, Y).

The characterizations we ascertain in this paper is
different from the summability results of matrices of
linear operators during 1950-1992 that C. Swartz"”! gave
an epoch-making result of Theorem A,

2. Main Results

Throughout this paper, X and Y are topological vector
spaces, and let ZL(X,Y)= {rev¥ : 7 is linear and
continuous}.

We begin with the corollary of Proposition 3 which is
a more clear-cut characterization of the family
(1”(X), 1” (Y)) for matrices of linear operators on
Banach spaces as follows.

Corollary 1. Let X,Y be Banach spaces and

T, € LX,Y), Vi, jEN. Then (7;), .y € (°(X), 1°(¥))
if and only if
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() sup;en || 73 | < 400, ViEN and

) lim,, | &, | =lim, | (7;,, 7}, ) | =0, ViEN
and
SUp; e | By || = SUp,en, a1 <1 EITU(T) < +oo.
Z

Proof. Suppose (7)), € (7 (X). 17 (Y)). Since
o0
{:Z;j(l‘)}izl

follows from the resonance theorem. Since Y, 7 ()
i=1

is bounded for every z €X and jEN, (8)

converges whenever (z;) €17 (X) and €N, lim
w2 =0 vEN (see[4], p- 21, Proposition 3.3).

im ”

Suppose sup; ||, | = +o. Then | &, |= sup

Z

i, €N and, hence,

‘>1+ sup, | 7;; | for some

neEN, |zl <1

Ny

E L1]
and {xu‘léjénl}CB:
llz Il <1}. Since E

{r;}c B and iEN, it follows from Lemma 1[3] that
there my >n, +1 such  that

‘>1+ sup; || 7, || for
some n, >1

{zex: ) converges for each

exists an
z;)

+co again, there is an i, €N for which

=)

]:J(
j=my+1

i By =
I, 1=

‘<f V1i<i<i, {z;} ©B By sup

my

1
>2+ —+ 3, sup
2 &

’ mg

SUP,en, 40 <1

7)./

>2+ 1+ Esup

iz

il and, hence,

lzl

I 71l for some nQEN and {sz 1< nQ} CB.
ObVlOuSly, ny, >m,. If i, <4, then
Z ]:y ('Tz/
j=1

mg

1
>2+2+Esupl I

m, Ny

E rz,

y

Z TZZ, ("”2]‘)

j=my+1

1
7,0~

This is a contradiction and we have that i, >, . Since
ny >my >n; +1,
ny

ij = H 332]‘)

my

Z 'L2j

=2+

Ny

T (x,.)
j=n,;+1 " 2
my

>2+— +Zsupl |7

E

2 ];ﬂ'(irQ,)
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2 7,(w)

J=my

i.e., letting m, =n, +1, ‘ >2.

Continuing by induction, we have integer sequences
1y <y <dy <o 1=m; <n; <my, <n, <my <ng <--

and {.rkj ©my, < j<n, kEN} C Bsuch that

ny

Z ];u’(xkj)

i=m,

‘ >k k=1,2,3,--.

Letting

{xkj, m, <j<mn., k=123,
z. =
0, otherwise,

)

Jj=my

()" (X) and  sup, ‘:+oo. This

contradicts Proposition 4. Hence, sup;c y || 2, || < + co.
Conversely, suppose that (8) and (9) hold. Then

ji (x j
(see

e [4], p. 21). Since

converges whenever (z;) €1”(X) and iEN

n

E :Z;j(l‘])

j=m
k
> 7))
j=1

SUP |4, <1

2T ())
i=1

| <sup,c 18,1,

= SUPenN, o) <1

Vm <n i €N, (8)+(9)=(4)+(6)+(7) and
(7)), ;e n € (7 (X), I (¥) by Proposition 4. []

X is said to be braked if for every (z;) €¢,(X) there
exist (;) €¢, and (z;) €¢,(X) such that z; =t z; for all j
(see [6], p. 43). Metnzable spaces are braked and the
non-metrizable (I', weak) is also braked. Especially, each
(LF) space is not metrizable but braked.

Each t €C gives a continuous linear operator ¢ : X—>X
by letting ¢ (z) =tx, x €X. Infact, if t =0, then ¢ : X—>X
is the zero operator, and for ¢ =0, ¢ : X— X is a linear
homeomorphism from X onto X. Then for f=¥* and
teC, feotey®and (f o t)(z) =f(ta), s EX.

Theorem 1. If X is braked and f;<
Fo (X, Y), Vi, jEN, then the following (d), (e) and (f) are
equivalent

@ (f, , ]cN

(© (fij 1), ;e n €U (X),

& (¢, (X), ¢ (V).
¢ (1), V() Eq,

J

® () lim, f;(=)
(10) for

=0, V;EN, z&X and
every (;;)€q and bounded

BCX, Z f;(t;z;) converges uniformly with respect to
both i€ N and {z;} c B
Proof. Obviously, (d)=(e). (e)=(f) by Proposition 1.

(e)=(d): Let (z;)E¢(X). Since X is braked,
(z;) = (t;2;) where (¢ )Eco( ) co( ) “(X). By (e),

(5007, - 50, o0

The braked condition of X can not be omitted in
Theorem 1.

Example 1. X=(",0c(”,1')) is not braked
e;= (0, -+,0,19,0,0, )0 in X but A,e; #> 0 in X for
every A\, —oo. For i, j €N define f,; : X—C by

. co \ _ Joy, i=7, o
o), 2 = 10 e

If (t,) Eq. then (f;; < t), ;e € (7 (X), ¢). In fact,
. o5} o o
it {00, 7 ] 7 S0 then swp ey
= M< +co by the resonance theorem and, hence,

];f”(tl((‘ilk)kozol) = f” (tl (alk)kozol) = tia“*)o-

However,

Efz/

Combining Theorem 1 and Proposition 2, we have

(fZ/)i,th 74 (Q) (X)7 q)) :

/ - zz L)—IVYEN

(e,) Ec,(X) but

Corollary 2. If X is braked and Y is a Banach space
and f,€F,(X.Y), VijEN, then (f)), o€
(¢, (X), ¢, (Y)) if and only if

(1) limf,;(x) =0, VjEN, z X and

(2) forevery (¢;) €¢, and bounded B < X,

lim, supicn 1 (f 0t fimen © b

For the case of linear operators, we have a more
clear-cut result as follows.

= hmm Supisupn =m,{z;}C B ‘ 1] ] ]

Corollary 3. If X is braked and Y is a Banach space
and 7,: X>Y is linear, Vi jEN, then
(7;,); je n €6 (X), ¢ (1)) if and only if

L)
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(1) lim; 7;,(z) =0, V€N, z X and
(2*) for every bounded B c X there is an m, EN

such that
Sup;e n || (]:'m[,’ ];m[ﬁ»l’ ) [ 5 < +co.

If, in addition, X is seminormed, then (2*) can be
replaced by the following (2**) 3m, €N such that sup
iEN || (];,”07 ];m“er "') H < +oo.

Proof. Let ¢, ={(t;)Eq :t;=0eventually} and
(t;) ¢\ Then §,= sup,.,|t] >0, 5,0
Observe that Bc X is bounded if and only if
By ={tz : [t| <1, 2 €D} is bounded.

Since (7, T/ iy |y = 1T T ) |
for m <n, if (2*) holds and B < X is bounded, then

By

limm SUp; e n SUp
n
{ IR
j=m
:limm (sm Supit N Sup

|

<lim,,d, sup;c y sup

mm

n
Z 7 (Zj)
= limm 5’/11 Supi eN Sup

j=m

ie., (2%)=".
Conversely, if (2*) fails, then there is a bounded
B < X such that

‘:an, z; €D for m§j§n}

n

j=m m

‘:nzm,ijBfor méjén]

n=ms oz €L for m<j< n}

n

Z ];j(zj)

Jj=mq

‘ n=my, z €L for my <j =< n} =0,

SUp;enN H }?im H B -

sup;e v 1 (7, T3y =) ||y = Fo0, Vm EN.

Since sup;cn | 2, || , = too. there exist i, n, EN

ny

J; 7 ()

But sup,ey | R, ., ||= +co so there exist integers
iy, ny =ny +1 and z,; €B for n, +1 <j <n, such that

Ty

>, T,(wy)

j=n;+1
integer sequences {i,}, 0=n, <n, <n, <n; <--- and
{Tepr; m 1 <j<m, ., k=0,1,2, -~} < Bsuch that

>1.

and z,;&B for 1 <j <n, such that ‘

‘ >2. Proceeding inductively, we have
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npt1
E 7 . >k+1, k=0,1,2,3, ---.
. i1 J (@)
j=n,+1
1 . . -
Now let =931 if n,<j<n. ., k=012, -,

then (¢;) €¢, and

i T,(tz) H

SUPie NSUPy, =, +1.{:)c B

j=ntl
1

> 2 szL,.(m:c,mj) >1, k=0,1,2, ---.
1

> 2 w.(mxkﬂj) ‘>1, k=0,1,2, --.

This contradicts (2') so (2')= (2*) holds. []

Theorem 2. f,, = F (X, V), Vi, jEN. If X is braked,
then the following (g), (h) and (i) are equivalent.

(g) (f7 ‘)i.jC NE ((h (X), 1= ().

(h) (f7] ° t]‘)iﬁjc NE (]OO (X)7 1~ ()/)7 v (t]') Eq]

() @) {f,(2)},” isbounded, vj=N, 2 =X and

(I1) for every bounded Bc X and (s;),
(t;) € ia, fi;(t;z;)  converges uniformly with
j=1

respect to both i €N and {x;} © B
Proof. Since X is braked, (g)<(h) is obvious. By
Proposition 3, (h)=(i). [

Corollary 4. Let X,Y be Banach spaces and
T, €L(X, Y), Vi, jEN. Then (7)), oy € (¢,(x), 17(1)) if
and only if

(8) sup;en | T |l < oo, vj<N and

(12) sup,cy [ B, || =

E];J(%)
j=1

SUP;neN, | o)) <1 ‘ < +oo.

Proof. Suppose that (8) and (12) hold. Then )} 7; ()
=

converges for every (z;) €¢,(X) and iEN (see [4], p.
19). If 0 = (z;) € ¢, (X), then

7, | = tim, | 37,6 |
j=1 j=1
. n 'T’.j
= H (:EJ) ” Oohmu Z ];1]( ) H
j=1 [ Z; Hm

< @)l supicen | By I, VEEN,



Summability Results for Mapping Matrices 55

e g

Conversely, suppose that (7] j)1 jen € (¢ (X), 1" (V)
but sup,c || &, ||= +co. Observe that (8) holds bt the
resonance theorem. As in the proof of Corollary 1, there
integer  sequences i, <i, < -
and {;;:m, <j<n, kEN} CB=
I« I <1} such that

exist
<my <ny, < -
{rex:

, my <ny

ny,

Z '/Z—';L] (Ikl )

Jj=my

‘>k, k=1,2,3, ..

Let

. _{1/\/E, i=iy, k=1,2,3, -,

0, otherwise,

m, <j=mn, k=1,2,3, -,
oterwise.

-

Then s,—0, t,—0 but

ny,

-3 2 e

ik ?;.I /xkj

This contradicts Theorem 2 so sup, =y || &, || < +oo.

O

(17 (X), 1”(Y)) € (¢ (X), 1" (Y)) and, in general, the
containment is  strict. We now
(1" (), 17 (Y) = (¢, (X), 1" (Y)) as follows.
(), let

characterize

For a matrix family (A(X),

A, 1Py
= {(];].) € (\(X), u(Y)) : each T, : X— Vs linear and
continuous}.

Theorem 3. A Banach space Y contains no copy of
¢ if and = (X), 1" ()l =
(¢ (X), 17 (¥))l, . y for every Banach space X-

Proof. = Let X be a Banach space and
(T); jen € (X, 17 (Ml x yy I () €17 (X) and

L)
D7) =
j=1

3 7,(t;z;) converges, Vi=N. Since Y contains no
ji=1

only if

(t;)Eq, then (tz,)E¢(X) so

‘>L k=1,2,3, ---.

00

copy of ¢, it follows from Theorem 4 that Y 7;,(x;)

converges for every i €N and (z;) €1 (X).
By Corollary 4, sup;cy || (7. 7}, --+) || < +co. For

0 (a) €1 (X),

= | (z) [ lim,

() ) H

= H
< @)l supien (T, Ty - )H VkEN
e, (7)), oy € 07 (), 17 (V).
& : Suppose that ¥ contains a copy of ¢,. We may
assume that (c,, I - Il ) is a subspace of V-
Define 7, : C—Y by 7,(t)=te; Vi, jeEN, t=C.

ij

Then 2T, = Et i€ converges in
=1 =1
(e I = 1) c Yy  for each t;,) Eq and
T;,(¢;) H EtJeJ = )], VEN, ie,
=1
(7)), jen € (g 17 (V). However, E Z
= =t
diverges for (1,1,1,--)€l” so (7, 17(V)) =
(¢ 1 (V). LI
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