J. Chosun Natural Sci. Vol. 11, No. 1 (2018) pp. 51 – 56 https://doi.org/10.13160/ricns.2018.11.1.51

Summability Results for Mapping Matrices

Won Sok Yoo^{*}

Abstract

For topological vector spaces X and Y, let $F_0(X, Y) = \{f \in Y^X : f(0) = 0\}$. Then it is an extremely large family and the family of linear operators is a very small subfamily of $F_0(X, Y)$. In this paper, we establish the characterizations of $F_0(X, Y)$ - matrix families $(l^{\infty}(X), l^{\infty}(Y)), (c_0(X), c_0(Y))$ and $(c_0(X), l^{\infty}(Y))$.

Keywords: Summability, $F_0(X, Y)$ -Matrix Family, Braked Space. **Mathematics Subject Classification:** 40A05, 40C05, 54A20

1. Introduction

For topological vector spaces X and Y, $F_0(X, Y) = \{f \in Y^X : f(0) = 0\}$ is an extremely large family and the family of linear operators is a very small subfamily of $F_0(X, Y)$.

In 2001 and 2002, a mapping family $QH_f(X, Y)$ including all linear operators and many non-linear mappings were defined in the literature^[1,2] which gave the characterization of $QH_f(X, Y)$ - matrix families $(c_0(X), c_0(Y)), (c_0(X), l^{\infty}(Y))$ and $(l^{\infty}(X), l^{\infty}(Y))$. However, $QH_f(X, Y)$ is also a small subfamily of $\mathcal{F}_0(X, Y)$ and so the quality lower of the results in the literature^[1,2] is lover than Theorem B^[3].

If $Y = (Y, \|\cdot\|)$ is a seminormed space and $\{f_j\} \subset F_0(X, Y)$, then for $n \in \mathbb{N}$ and $B \subset X$ let $R_n = (f_n, f_{n+1}, f_{n+2}, \cdots)$ and

$$\| R_n \|_B = \sup_{m \in \mathbb{N}, \{x_j\} \subset B} \left\| \sum_{k=0}^{m-1} f_{n+k}(x_j) \right\| = \sup_{k \geq n, \{x_j\} \subset B} \left\| \sum_{j=n}^m f_j(x_j) \right\|.$$

 $\begin{array}{ll} & \text{Obviously,} & \parallel R_n \parallel_B = & \text{sup} \; \left\{ \; \left\| \sum_{k \in \Delta} f_{n+k}(x_j) \; \right\| \colon \Delta \subset \mathbb{N} \\ & \text{finite,} \; \{x_j\} \subset B \} \text{ whenever } 0 \in B. \text{ If both } X \text{ and } Y \text{ are seminormed, then} \; \parallel R_n \parallel = \parallel R_n \parallel_{\{x \in X \colon \parallel x \parallel \ \le \ 1\}} \text{ is just} \\ & \text{the group norm of } (f_j)_{j \ge n} \stackrel{[4]}{=}. \end{array}$

For $f_{ij} \in \mathbb{F}_0(X, Y)$, $i, j \in \mathbb{N}$, R_{in} denotes the sequence $(f_{in}, f_{in+1}, f_{in+2}, \cdots)$.

In the paper^[3], we have established the characterizations of $F_0(X, Y)$ - matrix families $(l^{\infty}(X), c_0(Y))$ and $(l^{\infty}(X), l^{\infty}(Y))$ as follows.

Proposition 1. $f_{ij} \in \mathbb{F}_0(X, Y)$ for $i, j \in \mathbb{N}$. Then $(f_{ij})_{i,j\in\mathbb{N}} \in (l^{\infty}(X), c_0(Y))$ if and only if

(1) $\lim_{i \to j} f_{ij}(x) = 0, \forall j \in \mathbb{N}, x \in X$ and

(2) for every bounded $B \subset X$, $\sum_{j=1}^{\infty} f_{ij}(x_j)$ converges uniformly with respect to both $i \in \mathbb{N}$ and $\{x_i\} \subset B$.

Proposition 2. Let Y be a Banach space and $f_{ij} \in \mathcal{F}_0(X, Y)$, $\forall i, j \in \mathbb{N}$. Then $(f_{i,j})_{i,j \in \mathbb{N}} \in (l^{\infty}(X), c_0(Y))$ if and only if

(1) $\lim_{i} f_{ij}(x) = 0, \forall j \in \mathbb{N}, x \in X$ and

(2) for every bounded $B \subset X$, $\lim_{m} \sup_{i \in \mathbb{N}} \|R_{im}\|_{B} = 0$.

If, in addition, X is seminormed and each $f_{ij}: X \to Y$ is linear, then $(f_{ij})_{i,j \in \mathbb{N}} \in (l^{\infty}(X), c_0(Y))$ if and only if (1) and

Department of Applied Mathematics, Kumoh National Institute of Technology, Kumi 39177, Republic of Korea.

[†]Corresponding author : wsyoo@kumoh.ac.kr

⁽Received : January 26, 2018, Accepted : February 19, 2018)

(3) $\lim_{m} \sup_{i \in \mathbb{N}} || R_{im} || = 0.$

Proposition 3. $f_{ij} \in \mathbb{F}_0(X, Y), \forall i, j \in \mathbb{N}$. Then the following (a), (b) and (c) are equivalent.

- (a) $(f_{i,j})_{i,j\in\mathbb{N}} \in (l^{\infty}(X), l^{\infty}(Y)).$
- $\begin{array}{l} {\rm (b)} \quad (s_i f_{ij})_{i,j \, \in \, \mathbb{N}} \in (l^\infty \left(X \right), \, c_0 \left(\, Y \right)), \ \forall \left(s_i \right) \in c_0 \\ = \\ \left\{ (s_i) \in \mathbb{C}^{\,\mathbb{N}} \, : \, s_i \to 0 \right\}. \end{array}$
- (c) (4) $\{f_{ij}(x)\}_{i=1}^{\infty}$ is bounded, $\forall j \in \mathbb{N}, x \in X$ and (5) for every bounded $B \subset X$ and $(s_i) \in c_0$,

 $\sum_{j=1}^{\infty} s_i f_{ij}(x_j) \text{ converges uniformly with respect to both } i \in \mathbb{N} \text{ and } \{x_i\} \subset B.$

Proposition 4. If *Y* is seminormed and $f_{ij} \in \mathbb{F}_0(X, Y)$, $\forall i, j \in \mathbb{N}$, then $(f_{ij})_{i,j \in \mathbb{N}} \in (l^{\infty}(X), l^{\infty}(Y))$ if and only if

- (4) $\{f_{ij}(x)\}_{i=1}^{\infty}$ is bounded, $\forall j \in \mathbb{N}, x \in X$,
- (6) $\sum_{j=1}^{\infty} f_{ij}(x_j)$ converges, $\forall i \in \mathbb{N}, (x_j) \in l^{\infty}(X)$ and

(7) for every $(x_j) \in l^{\infty}(X)$ and integer sequences $i_1 < i_2 < \cdots, m_1 < n_1 < m_2 < n_2 < \cdots,$

$$\sup_{k \in \mathbb{N}} \left\| \sum_{j=m_k}^{n_k} f_{i_k j}(x_j) \right\| < +\infty.$$

In this paper we would like to give the additional characterizations of $(l^{\infty}(X), l^{\infty}(Y)), (c_0(X), c_0(Y))$ and $(c_0(X), l^{\infty}(Y))$ for matrices in $\mathcal{F}_0(X, Y)$.

The characterizations we ascertain in this paper is different from the summability results of matrices of linear operators during 1950-1992 that C. Swartz^[5] gave an epoch-making result of Theorem A^[3].

Main Results

Throughout this paper, X and Y are topological vector spaces, and let $L(X, Y) = \{T \in Y^X : T \text{ is linear and continuous}\}.$

We begin with the corollary of Proposition 3 which is a more clear-cut characterization of the family $(l^{\infty}(X), l^{\infty}(Y))$ for matrices of linear operators on Banach spaces as follows.

Corollary 1. Let *X*, *Y* be Banach spaces and $T_{ij} \in L(X, Y), \forall i, j \in \mathbb{N}$. Then $(T_{ij})_{i,j\in\mathbb{N}} \in (l^{\infty}(X), l^{\infty}(Y))$ if and only if

J. Chosun Natural Sci., Vol. 11, No. 1, 2018

(8) $\sup_{i \in \mathbb{N}} || T_{ij} || < +\infty, \forall j \in \mathbb{N}$ and

(9) $\lim_{m \to \infty} ||R_{im}|| = \lim_{m \to \infty} ||(T_{im}, T_{im+1}, \cdots)|| = 0, \forall i \in \mathbb{N}$ and

$$\sup_{i \in \mathbb{N}} \| R_{i1} \| = \sup_{i,n \in \mathbb{N}, \| x_j \| \le 1} \left\| \sum_{j=1}^n T_{ij}(x_j) \right\| < +\infty.$$

Proof. Suppose $(T_{ij})_{ij\in\mathbb{N}} \in (l^{\infty}(X), l^{\infty}(Y))$. Since $\{T_{ij(x)}\}_{i=1}^{\infty}$ is bounded for every $x \in X$ and $j \in \mathbb{N}$, (8) follows from the resonance theorem. Since $\sum_{j=1}^{\infty} T_{ij}(x_j)$ converges whenever $(x_j) \in l^{\infty}(X)$ and $i \in \mathbb{N}$, $\lim_{m \parallel} R_{im} \parallel = 0, \forall \in \mathbb{N}$ (see^[4], p. 21, Proposition 3.3).

Suppose $\sup_i || R_{i_1} || = +\infty$. Then $|| R_{i_1} || = \sup$ $\|x_{n \in \mathbb{N}, \|x_{j}\| \leq 1} \left\| \sum_{i=1}^{n} T_{i,j}(x_{j}) \right\| > 1 + \sup_{i} \|T_{i1}\| \text{ for some} \right\|$ $i_1 \! \in \! \mathbb{N} \ \text{and, hence,} \ \left\| \sum_{j=1}^{n_1} T_{i,j}(x_{1j}) \, \right\| \! > \! 1 \! + \, \sup_i \, \| \ T_{i1} \, \| \ \text{for}$ $n_1 > 1$ and $\{x_{1j} : 1 \le j \le n_1\} \subset B =$ some $\{x \in X : \|x\| \le 1\}$. Since $\sum_{j=1}^{\infty} T_{ij}(x_j)$ converges for each $\{x_i\} \subset B$ and $i \in \mathbb{N}$, it follows from Lemma 1[3] that there exists an $m_0 > n_1 + 1$ such that $\Big\|\sum_{i=m_{n}+1}^{\infty}T_{ij}(x_j)\,\Big\|<\frac{1}{2}, \ \forall \ 1\leq i\leq i_1, \ \big\{x_j\big\}\subset B. \quad \text{By sup}$ $_{i} \parallel R_{i1} \parallel = +\infty$ again, there is an $i_{2} \in \mathbb{N}$ for which $|| R_{i_2 1} || = \sup_{n \in \mathbb{N}, ||x_j|| \le 1} \left\| \sum_{i=1}^n T_{i_2 j}(x_j) \right\| > 2 + \frac{1}{2} + \sum_{i=1}^{m_0} \sup_{i \ge 1} C_{i_1 j}(x_i) || > 2 + \frac{1}{2} + \sum_{i=1}^{m_0} C_{i_1 j}$ $_{i}\parallel T_{ij}\parallel \quad \text{and, hence,} \quad \bigg\|\sum_{j=1}^{n_{2}}T_{ij}(x_{2j})\,\bigg\|>2+\frac{1}{2}+\sum_{j=1}^{m_{0}}\sup_{j=1}^{n_{0}}\sum$ $_{i} \parallel T_{ij} \parallel$ for some $n_{2} \in \mathbb{N}$ and $\{x_{2j} : 1 \leq j \leq n_{2}\} \subset B$. Obviously, $n_2 > m_0$. If $i_2 \le i_1$, then

$$\begin{split} \left\| \sum_{j=1}^{m_0} T_{i_j j}(x_{2j}) \right\| &\geq \left\| \sum_{j=1}^{n_2} T_{i_j j}(x_{2j}) \right\| - \left\| \sum_{j=m_0+1}^{n_2} T_{i_2 j}(x_{2j}) \right\| \\ &> 2 + \frac{1}{2} + \sum_{j=1}^{m_0} \sup_i \| T_{i_j} \| - \frac{1}{2} \\ &\geq 2 + \left\| \sum_{j=1}^{m_0} T_{i_j j}(x_{2j}) \right\|. \end{split}$$

This is a contradiction and we have that $i_2 > \! i_1.$ Since $n_2 > \! m_0 > \! n_1 + \! 1,$

$$\begin{split} \left\| \sum_{j=n_1+1}^{n_2} T_{ij}(x_{2j}) \right\| &\geq \left\| \sum_{j=1}^{n_2} T_{ij}(x_{2j}) \right\| - \left\| \sum_{j=1}^{n_1} T_{ij}(x_{2j}) \right\| \\ &> 2 + \frac{1}{2} + \sum_{j=1}^{m_0} \sup_i \| T_{ij} \| - \left\| \sum_{j=1}^{n_1} T_{ij}(x_{2j}) \right\| \\ &\geq 2 + \frac{1}{2}, \end{split}$$

i.e., letting
$$m_2 = n_1 + 1$$
, $\left\| \sum_{j=m_2}^{n_2} T_{i_j j}(x_{2j}) \right\| > 2.$

Continuing by induction, we have integer sequences $i_1 < i_2 < i_3 < \cdots$, $1 = m_1 < n_1 < m_2 < n_2 < m_3 < n_3 < \cdots$ and $\{x_{kj} : m_k \le j \le n_k, k \in \mathbb{N}\} \subset B$ such that

$$\left\|\sum_{j=m_{k}}^{n_{k}}T_{i,j}(x_{kj})\right\| > k, \ k = 1, 2, 3, \cdots.$$

Letting

$$x_j = \begin{cases} x_{kj}, & m_k \leq j \leq n_k, & k = 1, 2, 3, \cdots, \\ 0, & otherwise, \end{cases}$$

 $(x_j) \in l^{\infty}(X)$ and $\sup_k \left\| \sum_{j=m_k}^{n_k} T_{i,j}(x_j) \right\| = +\infty$. This

contradicts Proposition 4. Hence, $\sup_{i \in \mathbb{N}} || R_{i1} || < +\infty$. Conversely, suppose that (8) and (9) hold. Then

 $\sum_{j=1}^{\infty} T_{ij}(x_j) \text{ converges whenever } (x_j) \in l^{\infty}(X) \text{ and } i \in \mathbb{N}$ (see [4], p. 21). Since

$$\begin{split} \sup_{\parallel x_{j}\parallel \ \leq \ 1} \left\| \sum_{j=m}^{n} T_{ij}(x_{j}) \right\| &\leq \sup_{\parallel x_{j}\parallel \ \leq \ 1} \left\| \sum_{j=1}^{n} T_{ij}(x_{j}) \right\| \\ &\leq \sup_{k \in \mathbb{N}, \ \parallel x_{j}\parallel \ \leq \ 1} \left\| \sum_{j=1}^{k} T_{ij}(x_{j}) \right\| &\leq \sup_{i \in \mathbb{N}} \ \parallel R_{i1} \parallel, \end{split}$$

 $\forall m \le n, i \in \mathbb{N}, (8) + (9) \Longrightarrow (4) + (6) + (7)$ and $(T_{ij})_{i,j \in \mathbb{N}} \in (l^{\infty}(X), l^{\infty}(Y)) \text{ by Proposition 4.} \square$

X is said to be braked if for every $(x_j) \in c_0(X)$ there exist $(t_j) \in c_0$ and $(z_j) \in c_0(X)$ such that $x_j = t_j z_j$ for all *j* (see [6], p. 43). Metrizable spaces are braked and the non-metrizable $(l^1, \text{ weak})$ is also braked. Especially, each (LF) space is not metrizable but braked.

Each $t \in \mathbb{C}$ gives a continuous linear operator $t: X \to X$ by letting t(x) = tx, $x \in X$. In fact, if t = 0, then $t: X \to X$ is the zero operator, and for $t \neq 0$, $t: X \to X$ is a linear homeomorphism from X onto X. Then for $f \in Y^X$ and $t \in \mathbb{C}$, $f \circ t \in Y^X$ and $(f \circ t)(x) = f(tx)$, $x \in X$.

Theorem 1. If X is braked and $f_{ij} \in \mathcal{F}_0(X, Y)$, $\forall i, j \in \mathbb{N}$, then the following (d), (e) and (f) are equivalent.

(d)
$$(f_{ij})_{i,j\in\mathbb{N}} \in (c_0(X), c_0(Y)).$$

(e) $(f_{ij} \circ t_j)_{i,j\in\mathbb{N}} \in (l^{\infty}(X), c_0(Y)), \forall (t_j) \in c_0.$

(f) (1) $\lim_i f_{ij}(x) = 0$, $\forall_j \in \mathbb{N}$, $x \in X$ and (10) for every $(t_j) \in c_0$ and bounded $B \subset X$, $\sum_{j=1}^{\infty} f_{ij}(t_j x_j)$ converges uniformly with respect to both $i \in \mathbb{N}$ and $\{x_j\} \subset B$

The braked condition of X can not be omitted in Theorem 1.

Example 1. $X = (l^{\infty}, \sigma(l^{\infty}, l^1))$ is not braked : $e_j = (0, \dots, 0, 1^{(j)}, 0, 0, \dots) \rightarrow 0$ in X but $\lambda_j e_j \not\rightarrow 0$ in X for every $\lambda_j \rightarrow \infty$. For $i, j \in \mathbb{N}$ define $f_{ij} : X \rightarrow \mathbb{C}$ by

$$f_{ij}(\left(\boldsymbol{\alpha}_{k}\right)_{k=1}^{\infty}) = \begin{cases} \boldsymbol{\alpha}_{i}, & i=j, \\ 0, & i\neq j, \end{cases} (\boldsymbol{\alpha}_{k}) \in l^{\infty}.$$

$$\begin{split} & \text{If } (t_j) \in c_0, \text{ then } (f_{ij} \circ t_j)_{i,j \in \mathbb{N}} \in (l^{\infty}(X), c_0). \text{ In fact,} \\ & \text{if } \left\{ (\alpha_{jk})_{k=1}^{\infty} \right\}_{j=1}^{\infty} \in l^{\infty}(X), \text{ then } \sup_{j,k \in \mathbb{N}} |\alpha_{jk}| \\ & = M < +\infty \text{ by the resonance theorem and, hence,} \\ & \sum_{j=1}^{\infty} f_{ij}(t_j(\alpha_{jk})_{k=1}^{\infty}) = f_{ii}(t_i(\alpha_{ik})_{k=1}^{\infty}) = t_i \alpha_{ii} \to 0. \end{split}$$

However,
$$(f_{ij})_{i,j\in\mathbb{N}} \not\in (c_0(X), c_0) : (e_j) \in c_0(X)$$
 but

$$\sum_{j=1}^{\infty} f_{ij}(e_j) = f_{ii}(e_i) = 1, \forall i \in \mathbb{N}.$$

Combining Theorem 1 and Proposition 2, we have

Corollary 2. If X is braked and Y is a Banach space and $f_{ij} \in \mathcal{F}_0(X, Y)$, $\forall i, j \in \mathbb{N}$, then $(f_{ij})_{i,j \in \mathbb{N}} \in (c_0(X), c_0(Y))$ if and only if

- (1) $\lim_{i \neq j} f_{ij}(x) = 0, \forall j \in \mathbb{N}, x \in X$ and
- (2') for every $(t_j) \in c_0$ and bounded $B \subset X$, $\lim_m \sup_{i \in \mathbb{N}} \| (f_{im} \circ t_m, f_{im+1} \circ t_{m+1}, \cdots) \|_B$ $= \lim_m \sup_i \sup_{n \geq m, \{x_j\} \subset B} \| \sum_{j=m}^n f_{ij}(t_j x_j) \| = 0.$

For the case of linear operators, we have a more clear-cut result as follows.

Corollary 3. If *X* is braked and *Y* is a Banach space and $T_{ij}: X \to Y$ is linear, $\forall i, j \in \mathbb{N}$, then $(T_{ij})_{i,j\in\mathbb{N}} \in (c_0(X), c_0(Y))$ if and only if

J. Chosun Natural Sci., Vol. 11, No. 1, 2018

(1) $\lim_{i \to j} T_{ij}(x) = 0, \forall j \in \mathbb{N}, x \in X$ and

(2*) for every bounded $B \subset X$ there is an $m_0 \in \mathbb{N}$ such that

$$\sup_{i \in \mathbb{N}} \| (T_{i m_0}, T_{i m_0+1}, \cdots) \|_{p} < +\infty.$$

If, in addition, X is seminormed, then (2*) can be replaced by the following (2**) $\exists m_0 \in \mathbb{N}$ such that sup $_{i \in \mathbb{N}} \parallel (T_{i m_0}, T_{i m_0+1}, \cdots) \parallel < +\infty.$

Proof. Let $c_{00} = \{(t_j) \in c_0 : t_j = 0 \text{ eventually}\}$ and $(t_j) \in c_0 \setminus c_{00}$. Then $\delta_m = \sup_{j \ge m} |t_j| > 0, \ \delta_m \to 0$. Observe that $B \subset X$ is bounded if and only if $B_0 = \{tx : |t| \le 1, x \in B\}$ is bounded.

Since $\|(T_{im}, T_{im+1, \cdots})\|_{B_0} \ge \|(T_{in}, T_{in+1}, \cdots)\|_{B_0}$ for m < n, if (2*) holds and $B \subset X$ is bounded, then

$$\begin{split} &\lim_{m} \sup_{i \in \mathbb{N}} \sup_{j \in \mathbb{N}} \sup_{i \in \mathbb{N}} \sup_{j \in \mathbb{N}} u_{j} = m, x_{j} \in B \text{ for } m \leq j \leq n \\ &= \lim_{m} \delta_{m} \sup_{i \in \mathbb{N}} \sup_{i \in \mathbb{N}} \sup_{j \in \mathbb{N}} u_{j} = m, x_{j} \in B \text{ for } m \leq j \leq n \\ &\leq \lim_{m} \delta_{m} \sup_{i \in \mathbb{N}} \sup_{i \in \mathbb{N}} \sup_{i \in \mathbb{N}} u_{j} = m, x_{j} \in B \text{ for } m \leq j \leq n \\ &\leq \lim_{m} \delta_{m} \sup_{i \in \mathbb{N}} \sup_{i \in \mathbb{N}} u_{j} = m, z_{j} \in B_{0} \text{ for } m \leq j \leq n \\ &\leq \lim_{m} \delta_{m} \sup_{i \in \mathbb{N}} \sup_{i \in \mathbb{N}} u_{j} = m \\ &\left\{ \left\| \sum_{j = m}^{n} T_{ij}(z_{j}) \right\| : n \geq m, z_{j} \in B_{0} \text{ for } m_{0} \leq j \leq n \right\} = 0 \\ \end{split}$$

i.e., (2*)⇒(2').

Conversely, if (2*) fails, then there is a bounded $B \subset X$ such that

$$\begin{split} \sup_{i \in \mathbb{N}} & \left\| R_{im} \right\|_{B} = \\ \sup_{i \in \mathbb{N}} & \left\| \left(T_{im}, T_{im+1}, \cdots \right) \right\|_{R} = +\infty, \, \forall m \in \mathbb{N}. \end{split}$$

Since $\sup_{i \in \mathbb{N}} ||R_{i1}||_B = +\infty$, there exist $i_1, n_1 \in \mathbb{N}$ and $x_{1j} \in B$ for $1 \leq j \leq n_1$ such that $\left\| \sum_{j=1}^{n_1} T_{i,j}(x_{1j}) \right\| > 1$. But $\sup_{i \in \mathbb{N}} ||R_{i,n+1}|| = +\infty$ so there exist integers $i_2, n_2 \geq n_1 + 1$ and $x_{2j} \in B$ for $n_1 + 1 \leq j \leq n_2$ such that $\left\| \sum_{j=n_1+1}^{n_2} T_{i,j}(x_{2j}) \right\| > 2$. Proceeding inductively, we have integer sequences $\{i_k\}, 0 = n_0 < n_1 < n_2 < n_3 < \cdots$ and $\{x_{k+1,j} : n_k + 1 \leq j \leq n_{k+1}, k = 0, 1, 2, \cdots\} \subset B$ such that

J. Chosun Natural Sci., Vol. 11, No. 1, 2018

$$\Big\|\sum_{j\,=\,n_k\,+\,1}^{n_k\,+\,1} T_{\!i_{k+1}\,j(x_{k+1j})}\,\Big\|\,\!>\,\!k\!+\!1,\;\;k\!=\!0,\,1,2,\,3,\,\cdots.$$

Now let $t_j = \frac{1}{k+1}$ if $n_k < j \le n_{k+1}$, $k = 0, 1, 2, \dots$, then $(t_j) \in c_0$ and

$$\begin{split} \sup_{i \in \mathbb{N}} \sup_{n \ge n_{k}+1} \sup_{\{z_{j}\} \subset B} \left\| \sum_{j=n_{k}+1}^{n} T_{ij}(t_{j}z_{j}) \right\| \\ \ge \left\| \sum_{j=n_{k}+1}^{n_{k+1}} T_{i_{k+1}j}(\frac{1}{k+1}x_{k+1j}) \right\| > 1, \ k = 0, 1, 2, \cdots . \\ \ge \left\| \sum_{j=n_{k}+1}^{n_{k+1}} T_{i_{k+1}j}(\frac{1}{k+1}x_{k+1j}) \right\| > 1, \ k = 0, 1, 2, \cdots . \end{split}$$

This contradicts (2') so $(2') \Rightarrow (2^*)$ holds.

Theorem 2. $f_{ij} \in \mathbb{F}_0(X, Y)$, $\forall i, j \in \mathbb{N}$. If X is braked, then the following (g), (h) and (i) are equivalent.

- (g) $(f_{ij})_{i,j\in\mathbb{N}} \in (c_0(X), l^{\infty}(Y)).$
- $(\mathbf{h}) \hspace{0.1in} (f_{ij} \hspace{0.1in} \circ \hspace{0.1in} t_{j})_{i,j \in \hspace{0.1in} \mathbb{N}} \in (l^{\infty} \hspace{0.1in} (X) \hspace{0.1in}, \hspace{0.1in} l^{\infty} \hspace{0.1in} (Y) \hspace{0.1in}, \hspace{0.1in} \forall \hspace{0.1in} (t_{j}) \hspace{0.1in} \in \hspace{0.1in} c_{0}.$
- (i) (4) $\{f_{ij}(x)\}_{i=1}^{\infty}$ is bounded, $\forall j \in \mathbb{N}, x \in X$ and

(11) for every bounded $B \subset X$ and (s_i) , $(t_j) \in c_0$, $\sum_{i=1}^{\infty} s_i f_{ij}(t_j x_j)$ converges uniformly with

respect to both $i \in \mathbb{N}$ and $\{x_i\} \subset B$.

Proof. Since X is braked, $(g) \Leftrightarrow (h)$ is obvious. By Proposition 3, $(h) \Leftrightarrow (i)$. \Box

Corollary 4. Let X, Y be Banach spaces and $T_{ij} \in L(X, Y), \forall i, j \in \mathbb{N}$. Then $(T_{ij})_{i,j\in\mathbb{N}} \in (c_0(X), l^{\infty}(Y))$ if and only if

(8)
$$\sup_{i \in \mathbb{N}} || T_{ij} || < +\infty, \forall j \in \mathbb{N} \text{ and}$$

(12) $\sup_{i \in \mathbb{N}} || R_{i1} || = \sup_{i,n \in \mathbb{N}, || x_j || \le 1} \left\| \sum_{j=1}^{n} T_{ij}(x_j) \right\| < +\infty.$

Proof. Suppose that (8) and (12) hold. Then $\sum_{j=1}^{\infty} T_{ij}(x_j)$ converges for every $(x_j) \in c_0(X)$ and $i \in \mathbb{N}$ (see [4], p. 19). If $0 \neq (x_j) \in c_0(X)$, then

$$\begin{split} \left\| \sum_{j=1}^{\infty} T_{kj}(x_j) \right\| &= \lim_{n \to \infty} \left\| \sum_{j=1}^{n} T_{kj}(x_j) \right\| \\ &= \left\| (x_j) \right\|_{\infty} \lim_{n \to \infty} \left\| \sum_{j=1}^{n} T_{kj}(\frac{x_j}{\left\| x_j \right\|_{\infty}}) \right\| \\ &\leq \left\| (x_j) \right\|_{\infty} \sup_{i \in \mathbb{N}} \left\| R_{i1} \right\|, \forall k \in \mathbb{N}, \end{split}$$

i.e.,
$$\left\{\sum_{j=1}^{\infty} T_{ij}(x_j)\right\}_{i=1}^{\infty} \in l^{\infty}(Y).$$

Conversely, suppose that $(T_{ij})_{i,j\in\mathbb{N}} \in (c_0(X), l^{\infty}(Y))$ but $\sup_{i\in\mathbb{N}} || R_{i1} || = +\infty$. Observe that (8) holds bt the resonance theorem. As in the proof of Corollary 1, there exist integer sequences $i_1 < i_2 < \cdots, m_1 < n_1$ $< m_2 < n_2 < \cdots$ and $\{x_{kj} : m_k \le j \le n_k, k \in \mathbb{N}\} \subset B =$ $\{x \in X : || x || \le 1\}$ such that

$$\bigg\|\sum_{j=m_k}^{n_k} T_{\!i_k j}(x_{kj})\,\bigg\|>\!k,\;k\!=\!1,\,2,\,3,\,\cdots.$$

Let

$$\begin{split} s_i &= \begin{cases} 1/\sqrt{k}, \ i=i_k, \ k=1,2,3, \ \cdots, \\ 0, \qquad otherwise, \end{cases} \\ t_j &= \begin{cases} 1/\sqrt{k}, \ m_k \leq j \leq n_k, \ k=1,2,3, \ \cdots, \\ 0, \qquad oterwise. \end{cases} \end{split}$$

Then $s_i \rightarrow 0, t_j \rightarrow 0$ but

$$\bigg\|\sum_{j=m_k}^{n_k}\!\!s_{i_k}T_{i,j}(t_jx_{kj})\,\bigg\|=\,\bigg\|\,\frac{1}{k}\!\sum_{j=m_k}^{n_k}\!T_{i,j}(x_{kj})\,\bigg\|>\!1,\;k\!=\!1,2,3,\,\cdots$$

This contradicts Theorem 2 so $\sup_{i \in \mathbb{N}} || R_{i1} || < +\infty$.

 $(l^{\infty}(X), l^{\infty}(Y)) \subset (c_0(X), l^{\infty}(Y))$ and, in general, the containment is strict. We now characterize $(l^{\infty}(X), l^{\infty}(Y)) = (c_0(X), l^{\infty}(Y))$ as follows.

For a matrix family $(\lambda(X), \mu(Y))$, let

 $(\lambda(X), \mu(Y))|_{L(X, Y)}$

 $=\{(T_{ij}) \in (\lambda(X), \mu(Y)) : \text{ each } T_{ij} : X \to Y \text{ is linear and continuous}\}.$

Theorem 3. A Banach space *Y* contains no copy of c_0 if and only if $(l^{\infty}(X), l^{\infty}(Y))|_{L(X, Y)} = (c_0(X), l^{\infty}(Y))|_{L(X, Y)}$ for every Banach space *X*.

 copy of c_0 , it follows from Theorem $4^{[7]}$ that $\sum_{j=1}^{\infty} T_{ij}(x_j)$ converges for every $i \in \mathbb{N}$ and $(x_i) \in l^{\infty}(X)$.

By Corollary 4, $\sup_{i \in \mathbb{N}} || (T_{i1}, T_{i2}, \cdots) || < +\infty$. For $0 \neq (x_i) \in l^{\infty}(X)$,

$$\begin{split} \left\| \sum_{j=1}^{\infty} T_{kj}(x_j) \right\| &= \| (x_j) \|_{\infty} \lim_{n \to \infty} \left\| \sum_{j=1}^{n} T_{kj}(\frac{x_j}{\| (x_j) \|_{\infty}}) \right| \\ &\leq \| (x_j) \|_{\infty} \sup_{i \in \mathbb{N}} \| (T_{i1}, T_{i2}, \cdots) \|, \forall k \in \mathbb{N}, \end{split}$$

i.e., $(T_{ij})_{i,j\in\mathbb{N}} \in (l^{\infty}(X), l^{\infty}(Y)).$

 $\Leftarrow : \text{Suppose that } Y \text{ contains a copy of } c_0. \text{ We may} \\ \text{assume that } (c_0, \| \cdot \|_{\infty}) \text{ is a subspace of } Y.$

Acknowledgments

This research was supported by Kumoh National Institute of Technology.

References

- R. Li, L. Li, and M. K. Shin, "Summability results for operator matrices on topological vector spaces", Sci. China Ser. A Math., Vol. 44, pp. 1300-1311, 2001.
- [2] R. Li, M. K. Shin, and C. Swartz, "Operator matrices on topological vector spaces", J. Math. Anal. Appl., Vol. 274, pp. 645-658, 2002.
- [3] W. S. Yoo, "The characterizations of matrix families $(c_0(X), l^{\infty}(Y))$ and $(l^{\infty}(X), l^{\infty}(Y))$ ", Applied Mathematical Sciences, Vol. 10, pp. 653-659, 2016.
- [4] I. J. Maddox, "Infinite matrices of operators", ed.A. Dold and B. Eckmann, New York: Springer-Verlag Berlin-Heidelberg, 1980.

J. Chosun Natural Sci., Vol. 11, No. 1, 2018

Won Sok Yoo

- [5] R. Li and C. Swartz, "A nonlinear Schur theorem", Acta Scientiarum Mathematicarum, Vol. 58, pp. 497-508, 1993.
- [6] S. M. Khaleelulla, "Counterexamples in topological vector spaces", ed. A. Dold and B. Eckmann, New York: Springer-Verlag Berlin-Heidelberg, 1982.
- [7] R. L. Li and Q. Y. Bu, "Locally convex spaces containing no copy of c₀", J. Math. Anal. Appl., Vol. 172, pp. 205-211, 1993.