Fig. 1. SAS E-Miner flow chart
Fig. 2. Results of decision tree analysis
Fig. 3. Structure of multi-layered neural network
Table 1. Composition of subscription
Table 2. Contract rate of initial sale
Table 3. Variables for data mining
Table 4. Statistics of decision tree analysis
Table 5. Classification rate of decision tree analysis
Table 6. RMSE by the number of hidden nodes
Table 7. Statistics of neural network analysis
Table 8. Classification rate of Neural network analysis
Table 11. Results of logistic regression analysis
Table 9. Statistics of logistic regression analysis
Table 10. Classification rate of logistic regression
Table 12. Comparison of final models
Table 13. Comparison of determinants by model
References
- M. S. Baik & J. C. Shin. (2011). A Study on the Determinants of Initial Sales Rate for New Apartment Housing. Journal of the Korean Urban Management Association, 24(1), 213-237.
- M. S. Baik & J. C. Shin. (2011). A Study on the Condominium Sales Marketing Activities and Initial Sales Rate. Journal of the Korea Real Estate Analysts Association, 17(3), 25-43.
- H. S. Kwon & D. W. Bang. (2015). A Study on the Cause of Difference between New Apartment Subscription Rate and Initial Pre-sale Contract Rate. Housing Studies Review, 23(3), 111-143.
- G. S. Linoff & M. J. Berry. (2018). Data Mining Techniques: For Marketing, Sales, and Customer Relation management. Seoul : Hankyngsa.
- M. H. Huh & Y. G. Lee. (2008). Data Mining Modeling and Cases. Seoul : Hannarae Publishing Co.
- Y. H. Kim & S. S. Ahn. (2006). A Study on the Characteristics of Fast-food Restaurant's Customers. Tourism & Leisure Research, 18(2), 191-209.
- W. J. Kim, Y. S. Choi & D. H. Yoo. (2018). Development of Win-Loss Prediction Models and Strategies for Improving Winning Rate of the Korean Professional Baseball Teams Using Data Mining Techniques. Korea Journal of Sport Management, 23(3), 88-104. https://doi.org/10.31308/KSSM.23.3.6
- J. Y. Oh & S. H. Choi. (2018). An Analysis of the Characteristics of Companies introducing Smart Factory System Using Data Mining Technique. Journal of the Korea Convergence Society, 9(5), 179-189. https://doi.org/10.15207/JKCS.2018.9.5.179
- H. J. Chun. (2015). A Study on Korean Household Income Using Data Mining. Journal of the Korea Planning Association, 50(2), 227-241.
- K. M. Kim & C. K. Kim. (2017). Forecasting of Investment Characteristics of Global REITs Using Data Mining. Korea Real Estate Review, 68, 44-56
- J. Y. Lee, M. H. Choi & S. Y. Lee. (2007). A Study on the Forecasting Model of Apartment Price Based on Data Mining. Journal of the Korea Planning Association, 42(4), 135-148.
- H. J. Chun. (2017). A Study on the Determinants of Housing Price Using Data Mining, Residential Environment: Journal of The Residential Environment Institute of Korea, 15(3), 35-46.
- B. C. Kim, Y. Kim, M. Kim & J. S. Lee. (2018). Using Data Mining Techniques to Model Housing Rental Price near Universities in Seoul. Journal of the Korean Institute of Industrial Engineers, 44(4), 259-271. https://doi.org/10.7232/JKIIE.2018.44.4.259
- A. R. Hong, J. P. Ko & S. J. Yoo. (2010). A Study on the Forecasting Model of the Investment Characteristics of Seoul Office Buildings based on Data Mining. Seoul Studies, 11(2), 51-68.
- K. S. Mun, J. G. Choi & H. S. Lee. (2015). An Analysis for Price Determinants of Small and Medium-Sized Office Buildings Using Data Mining Method in Gangnam-Gu. International Journal of Contents, 15(7), 414-427.
- P. W. Huh, S. Y. Kim, Y. S. Hong & G. E. Shim. (2014). A Study on the Determinants of Office Building Property Management Method in Seoul. Seoul Studies, 15(3), 41-57.
- H. S. Lee. (2004). A Study on Preference Characteristics for Each Condominium in a Same Site on Initial and Re-sales Markets Using Survival Analysis. Journal of the Korea Planning Association, 39(3), 81-93.
- T. Y. Kim & C. M. Lee. (2005, November). Comparative Study on Renter's Choice with Data Mining Techniques. 2005 Spring Congress of Korea Planning Association.
- H. Byeon. (2017). Exploring Influence Factors for Peer Attachment in Korean Youth Based on Multi-Layer Perceptron Artificial Neural Networks. Journal of the Korea Convergence Society, 8(10), 209-214. https://doi.org/10.15207/JKCS.2017.8.10.209
- T. S. Ki & S. H. Lee. (2017). A Prediction Scheme for Power Apparatus using Artificial Neural Networks. Journal of Convergence for Information Technology, 7(6), 201-207. https://doi.org/10.22156/CS4SMB.2017.7.6.201
- H. Yoon. (2018). Classificatin of Normal and Abnormal Heart Sounds Using Neural Network. Journal of Convergence for Information Technology, 8(5), 131-135. https://doi.org/10.22156/CS4SMB.2018.8.5.131
- S. Y. Lee. (2003). A Study on Data Application Using Data Mining. Master dissertation. Yonsei University, Seoul.
- B. S. Kim, W. S. Bae, K. H. Seok, D. H. Cho. & K. L. Choi. (2018). SAS EM 14.1. Seoul : Kyowoo.
- J. H. Kim. (2008). The Effect of the Landscape Visibility of a Golf Course on Apartment Price: A Case Study of the Residential Area around Hansung C.C. in Yong-in City. Journal of The Korean Regional Development Association, 20(4), 69-88.
- H. G. Sung & J. Y. Kim. (2011). The Impacts of Time-Varying Accessibility of Facilities on Housing Price Change by the Modified Repeat Sales Model - The Case of Subway Line 9 in Seoul. Journal of the Korean Society of Civil Engineers, D31(3D), 477-487.
- M. K. Oh & J. H. Cho. (2018). Newly Improved Incineration Plant's Impacts on Nearby Apartment Sale Prices with Interrupted Time Series Analysis, Journal of Korea Planning Association, 53(3), 145-159. https://doi.org/10.17208/jkpa.2018.06.53.3.145