DOI QR코드

DOI QR Code

계산과학분야의 고성능컴퓨팅 교육 개선을 위한 탐색적 연구

A Study on the Improvement of High Performance Computing Education in Computational Science

  • 윤희준 (성균관대학교 교과교육학과) ;
  • 안성진 (성균관대학교 컴퓨터교육과)
  • Yoon, Heejun (Department of Disciplinary Education, Sungkyunkwan University) ;
  • Ahn, Seongjin (Department of Computer Education, Sungkyunkwan University)
  • 투고 : 2018.09.05
  • 심사 : 2018.12.20
  • 발행 : 2018.12.28

초록

계산과학분야에서 고성능컴퓨팅(HPC)을 활용하기 위해서는 프로그래밍, 알고리즘, 자료구조 등 컴퓨터과학의 지식들과 기술들을 배워야 한다. 본 논문에서는 계산과학분야의 IT교육현황 조사와 설문조사를 통해 고성능컴퓨팅 교육을 개선시키기 위한 정책 방향을 제안하는데 있다. 이를 위해 국내 대학의 물리학, 화학, 생명과학, 지구과학분야의 전공과목 중에서 IT관련 과목 현황과 사용자들의 국내 고성능컴퓨팅 교육에 대한 인식을 조사하였다. 그 결과 계산과학분야의 IT과 목비율은 응용 전공과목에 비해 매우 낮았다. 대학의 교육 요구도는 높게 나왔지만, 대학의 교육 제공 수준은 제일 낮게 나왔다. 또한 대부분의 사용자들은 독학으로 필요한 지식과 기술들을 습득한 것으로 조사되었다. 즉 대학의 역할이 가장 시급하고 중요하며 전문기관과 온라인교육의 역할도 중요하다고 확인하였다.

In order to utilize HPC in Computational science, It is necessary to learn the knowledge and skills of computer science such as programming, algorithms and data structure. In this paper, we investigate IT education status in Computational science and propose policy directions to improve the HPC education through user survey. To do this, we surveyed the current state of IT subjects among major subjects in physics, chemistry, life sciences, and earth science in domestic universities and surveyed the users' Recognition of HPC education. As a result, the ratio of IT subjects in Computational science was very lower than the ratio of major domain subjects. Despite the high educational needs of universities, the educational level of universities was the lowest. Most users have learned the necessary knowledge and skills through self-study. We recognized the role of the university is the most urgent and important, and the role of professional institutions and online education is also important.

키워드

DJTJBT_2018_v16n12_21_f0001.png 이미지

Fig. 1. IT course status in Computational Science

DJTJBT_2018_v16n12_21_f0002.png 이미지

Fig. 2. Major course vs Computer science course in Computational Science

DJTJBT_2018_v16n12_21_f0003.png 이미지

Fig. 3. Need for HPC Education

DJTJBT_2018_v16n12_21_f0004.png 이미지

Fig. 4. Environment of HPC education

DJTJBT_2018_v16n12_21_f0005.png 이미지

Fig. 5. Experience of HPC education

DJTJBT_2018_v16n12_21_f0006.png 이미지

Fig. 6. Learning path of HPC Knowledge & Skill

DJTJBT_2018_v16n12_21_f0007.png 이미지

Fig. 7. Importance of HPC education types

DJTJBT_2018_v16n12_21_f0008.png 이미지

Fig. 8. Degree of provision by HPC educational type

Table 1. Researches on HPC Education Programs

DJTJBT_2018_v16n12_21_t0001.png 이미지

Table 2. Subject Balance(%Courses) for B.S degree programs in CS(%), CSE(%), CP(%), and PH(%)

DJTJBT_2018_v16n12_21_t0002.png 이미지

Table 3. Researches on HPC Education Programs

DJTJBT_2018_v16n12_21_t0003.png 이미지

Table 4. IT Subjects in Computational Science

DJTJBT_2018_v16n12_21_t0004.png 이미지

Table 5. t-test of HPC education type

DJTJBT_2018_v16n12_21_t0005.png 이미지

Table 6. Borich’s socre of HPC education type

DJTJBT_2018_v16n12_21_t0006.png 이미지

참고문헌

  1. D. E. Stevenson. (1993, March). Science, computational science, and computer science: at a crossroads. In Proceedings of the 1993 ACM conference on Computer science (pp. 7-14). ACM. DOI : 10.1145/170791.170795
  2. E. I. D. C. Joseph. (2015). High Performance Computing in the EU: Progress on the Implementation of the European HPC Strategy Report. PATC OMB, PRACE Advanced Training Centres HPC Curriculum 2013-2014, PRACE IP3 April 2014, 2013.
  3. J. M. Shalf & R. Leland. (2015). Computing beyond moore's law. Computer, 48(12), 14-23. DOI : 10.1109/MC.2015.374
  4. S. J. Ezell & R. D. Atkinson. (2016). The vital importance of high-performance computing to US competitiveness. Information Technology and Innovation Foundation, April, 28.
  5. O. Yasar & R. H. Landau. (2003). Elements of computational science and engineering education. SIAM review, 45(4), 787-805. DOI : 10.1137/S0036144502408075
  6. O. Yasar, K. S. Rajasethupathy, R. E. Tuzun, R. A. McCoy & J. Harkin. (2000). A new perspective on computational science education. Computing in Science & Engineering, 2(5), 74-79. DOI : 10.1109/MCSE.2000.10020
  7. C. Tadonki. (2012, May). Basic parallel and distributed computing curriculum, Second NSF. In TCPP Workshop on Parallel and Distributed Computing Education (EduPar'12), in conjunction with the 26th IEEE International Parallel & Distributed Processing Symposium (IPDPS).
  8. L. A. Wilson & S. C. Dey. (2016, November). Computational science education focused on future domain scientists. In Proceedings of the Workshop on Education for High Performance Computing (pp. 19-24). IEEE Press. DOI : 10.1109/EduHPC.2016.8
  9. C. Connor, A. Bonnie, G. Grider & A. Jacobson. (2016, November). Next generation HPC workforce development: the computer system, cluster, and networking summer institute. In Proceedings of the Workshop on Education for High Performance Computing (pp. 32-39). IEEE Press. DOI : 10.1109/EduHPC.2016.10
  10. National Assembly, National Ultra High Performance Computers Utilization and Promotion Law, http://likms.assembly.go.kr/law/lawsLawtInqyDetl1010.do
  11. T. Ungerer & P. Carpenter. (2018). Eurolab-4-HPC Long-Term Vision on High-Performance Computing. arXiv preprint arXiv:1807.04521.
  12. Y. J. Kim. (February 26, 2012) Ultra high-performance computing to lead the fourth industrial revolution, Etnews, http://www.etnews.com/20180223000182
  13. S. Gallopoulos, E. N. Houstis & J. R. Rice. (1992). Future research directions in problem solving environments for computational science.
  14. U. Fabricius, C. Freundl, H. Kostler & U. Rude. (2005, May). High performance computing education for students in computational engineering. In International Conference on Computational Science (pp. 27-35). Springer, Berlin, Heidelberg. DOI :10.1007/11428848_4
  15. S. W. G. O. C. U. EDUCATION, P. T. A. L. P. Co-Chairs, A. Shiflet, I. Vakalis, K. Jordan & S. S. John. (2011). Undergraduate computational science and engineering education. SIAM review, 53(3), 561-574. DOI : 10.1137/07070406X
  16. V. Gergel, I. Meyerov & A. Sysoyev. (2015). Unified Assessment of Skills in Parallel and Distributed Computing. Fac. Comput. Math. Cybern, 5-6.
  17. EUROLAB-4-HPC. D3.2 Best Practices in HPC Training. https://www.eurolab4hpc.eu/
  18. R. H. Landau. (2007). Computational Physics Education; why, what and how. Computer physics communications, 177(1-2), 191-194. DOI : 10.1016/j.cpc.2007.02.040
  19. HPC Students Undergraduate Programs. http://hpcuniversity.org/students/undergraduatePrograms/
  20. NSF. (2011), Course Catalog, XSEDE USER PORTAL, https://portal.xsede.org/training/course-catalog
  21. J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw & R. Roskies. (2014). XSEDE: accelerating scientific discovery. Computing in Science & Engineering, 16(5), 62-74. DOI : 10.1109/MCSE.2014.80
  22. Texas Advanced Computing Center, The University of Texas at Austin, (2011-2018), ACADEMIC COURSES, https://www.tacc.utexas.edu/education/academic-courses
  23. S. Lathrop, A. Mason, S. I. Gordon & M. Faerman. (2013, July). HPC university: getting information about computational science professional and educational resources and opportunities for engagement. In Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery (p. 67). ACM. DOI : 10.1145/2484762.2484771
  24. HPC University. http://hpcuniversity.org/about
  25. PRACE, PRACE Members. http://www.prace-ri.eu/members/
  26. Training Portal of Partnership for Advanced Computing in Europe(PRACE). http://www.training.prace-ri.eu/uploads/tx_pracetmo
  27. N. Alexandrov, V. Alexandrov & R. Ramirez. (2012). The Role of Computational Science and Emerging Technologies in the Natural Sciences Education at University Level. Procedia Computer Science, 9, 1789-1798. DOI :10.1016/j.procs.2012.04.197
  28. EPCC, Learning with EPCC. http://www.epcc.ed.ac.uk/education-training/
  29. High-Performance Computing Center(HLRS). Solutions&Services/TRAINING, http://www.hlrs.de/solutions-services/service-portfolio/training/
  30. BSC Education, Education, https://www.bsc.es/education
  31. S. J. Kim & D. E. Cho. (2018). A Stduy on Learning Model for Effective Coding Education. Journal of the Korea Convergence Society, 9(2), 7-12. https://doi.org/10.15207/JKCS.2018.9.2.007
  32. K. M. Kim & H. S. Kim. (2014). A Case Study on Necessity of Computer Programming for Interdisciplinary Education. Journal of digital convergence, 12(11), 339-348. https://doi.org/10.14400/JDC.2014.12.11.339
  33. Supercomputing education center, About Supercomputing courses https://webedu.ksc.re.kr/subjectIntroduce.es?mid=a10201000000
  34. EDISION, EDISION Portal https://www.edison.re.kr/web/portal/
  35. Ministry of Education, Standard classification system of Higher Education in Korea http://www.academyinfo.go.kr/UIPISA/uipnh/unt/mjrinf o/UntMjrInfoByUnvList.do
  36. G. D. Borich. (1980). A needs assessment model for conducting follow-up studies. Journal of teacher education, 31(3), 39-42. DOI :10.1177/002248718003100310
  37. S. K. Oh, J. S. Jun & Y. H. Parl. (2014). Complementing a Typical Educational Needs Analysis Using a Survey in Setting the Priority of the Needs. Journal of elementary education research, 27(4), 77-97.
  38. M. R. Eom, W. J. Choi & Y. H. Song. (2018). Exploring the Educational Needs of Learning Supporting Program on the Students' Perception of Current Competencies and Important Competencies. Journal of Convergence for Information Technology, 8(3), 175-181. DOI :10.22156/CS4SMB.2018.8.3.175
  39. K. J. Cahill, S. Lathrop & S. Gordon. (2017). Building a Community of Practice to Prepare the HPC Workforce. Procedia computer science, 108, 2131-2140. DOI : 10.1016/j.procs.2017.05.059
  40. J. Mullen, C. Byun, V. Gadepally, S. Samsi, A. Reuther & J. Kepner. (2017). Learning by doing, High Performance Computing education in the MOOC era. Journal of Parallel and Distributed Computing, 105, 105-115. DOI : 10.1016/j.jpdc.2017.01.015
  41. Supercomputing education center, online course. https://webedu.ksc.re.kr/movieLecture.es?mid=a10401000000