DOI QR코드

DOI QR Code

Cadmium-Substituted Concanavalin A and Its Trimeric Complexation

  • Park, Yeo Reum (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Kim, Da Som (Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Lee, Dong-Heon (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Kang, Hyun Goo (Department of Neurology, Chonbuk National University School of Medicine) ;
  • Park, Jung Hee (Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Lee, Seung Jae (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University)
  • Received : 2018.09.14
  • Accepted : 2018.10.18
  • Published : 2018.12.28

Abstract

Concanavalin A (ConA) interacts with carbohydrates as a lectin, and recent reports proposed its application for detecting a diversity of viruses and pathogens. Structural studies have detailed the interaction between ConA and carbohydrates and the metal coordination environment with manganese and calcium ions (Mn-Ca-ConA). In this study, ConA was crystallized with a cadmium-containing precipitant, and the refined structure indicates that $Mn^{2+}$ was replaced by $Cd^{2+}$ (Cd-Ca-ConA). The structural comparison with ConA demonstrates that the metal-coordinated residues of Cd-Ca-ConA, that is Glu8, Asp10, Asn14, Asp19, and His24, do not have conformational shifts, but residues for sugar binding, including Arg228, Tyr100, and Leu99, reorient their side chains, slightly. Previous studies demonstrated that excess cadmium ions can coordinate with other residues, including Glu87 and Glu183, which were not coordinated with $Cd^{2+}$ in this study. The trimeric ConA in this study coordinated $Cd^{2+}$ with other residues, including Asp80 and Asp82, for complex generation. The monomer does not have specific interaction near interface regions with the other monomer, but secondary cadmium coordinated with two aspartates (Asp80 and Asp82) from monomer 1 and one aspartate (Asp16) from monomer 2. This study demonstrated that complex generation was induced via coordination with secondary $Cd^{2+}$ and showed the application potential regarding the design of complex formation for specific interactions with target saccharides.

Keywords

References

  1. Chu ng NJ, Park YR, Lee DH, Oh SY, Park JH, Lee SJ. 2017. Heterometal-coordinated monomeric concanavalin A at pH7.5 from Canavalia ensiformis. J. Microbiol. Biotechnol. 27: 2241-2244. https://doi.org/10.4014/jmb.1709.09057
  2. Ki m D, Lee HM, Oh KS, Ki AY, Protzman RA, Kim D, et al. 2017. Exploration of the metal coordination region of concanavalin A for its interaction with human norovirus. Biomaterials 128: 33-43. https://doi.org/10.1016/j.biomaterials.2017.03.006
  3. D erewenda Z, Yariv J, Helliwell JR, Kalb AJ, Dodson EJ, Papiz MZ, et al. 1989. The structure of the saccharidebinding site of concanavalin A. EMBO J. 8: 2189-2193. https://doi.org/10.1002/j.1460-2075.1989.tb08341.x
  4. Sanders JN, Chenoweth SA, Schwarz FP. 1998. Effect of metal ion substitutions in concanavalin A on the binding of carbohydrates and on thermal stability. J. Inorg. Biochem. 70: 71-82. https://doi.org/10.1016/S0162-0134(98)00016-6
  5. Bezerra GA, Oliveira TM, Moreno FB, De Souza EP, Da Rocha BA, Benevides RG, et al. 2007. Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: new insights into the understanding of the structure-biological activity relationship in legume lectins. J. Struct. Biol. 160: 168-176. https://doi.org/10.1016/j.jsb.2007.07.012
  6. Kaushik S, Mohanty D, Surolia A. 2009. The role of metal ions in substrate recognition and stability of concanavalin A: a molecular dynamics study. Biophys. J. 96: 21-34. https://doi.org/10.1529/biophysj.108.134601
  7. M agnuson JA, Alter GM, Appel DM, Christie DJ, Munske GR, Pandolfino ER. 1983. Metal ion binding to concanavalin A. J. Biosci. 5: 9-17. https://doi.org/10.1007/BF02702969
  8. M oothoo DN, Naismith JH. 1998. Concanavalin A distorts the ${\beta}-GlcNAc-(1{\rightarrow}2)$-Man linkage of ${\beta}-GlcNAc-(1{\rightarrow}2)-{\alpha}-Man-(1{\rightarrow}3)-[{\beta}-GlcNAc-(1{\rightarrow}2)-{\alpha}-Man-(1{\rightarrow}6)]$-Man upon binding. Glycobiology 8: 173-181. https://doi.org/10.1093/glycob/8.2.173
  9. Naismith JH, Habash J, Harrop SJ, Helliwell JR, Hunter WN, Wan TC, et al. 1993. Refined structure of cadmium-substituted concanavalin A at 2.0A resolution. Acta Crystallogr. D. Biol. Crystallogr. 49: 561-571. https://doi.org/10.1107/S0907444993006390
  10. Bouckaert J, Loris R, Wyns L. 2000. Zinc/calcium- and cadmium/cadmium-substituted concanavalin A: interplay of metal binding, pH and molecular packing. Acta Crystallogr. D. Biol. Crystallogr. 56: 1569-1576. https://doi.org/10.1107/S0907444900013342
  11. Bouckaert J, Poortmans F, Wyns L, Loris R. 1996. Sequential structural changes upon zinc and calcium binding to metalfree concanavalin A. J. Biol. Chem. 271: 16144-16150. https://doi.org/10.1074/jbc.271.27.16144
  12. E mmerich C, Helliwell JR, Redshaw M, Naismith JH, Harrop SJ, Raftery J, et al. 1994. High-resolution structures of single-metal-substituted concanavalin A: the Co, Ca-protein at 1.6 ${\AA}$ and the Ni, Ca-protein at 2.0 ${\AA}$. Acta Crystallogr. D. Biol. Crystallogr. 50: 749-756. https://doi.org/10.1107/S0907444994002143
  13. Kabsch W. 2010. Xds. Acta Crystallogr. D. Biol. Crystallogr. 66: 125-132. https://doi.org/10.1107/S0907444909047337
  14. Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497. https://doi.org/10.1016/0022-2836(68)90205-2
  15. M cCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40: 658-674. https://doi.org/10.1107/S0021889807021206
  16. Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
  17. Laskowski RA, MacArthur MW, Thornton JM. 1998. Validation of protein models derived from experiment. Curr. Opin. Struct. Biol. 8: 631-639. https://doi.org/10.1016/S0959-440X(98)80156-5
  18. Bouckaert J, Dewallef Y, Poortmans F, Wyns L, Loris R. 2000. The structural features of concanavalin A governing non-proline peptide isomerization. J. Biol. Chem. 275: 19778-19787. https://doi.org/10.1074/jbc.M001251200
  19. Doyle R, Keller K. 1984. Lectins in diagnostic microbiology. Eur. J. Clin. Microbiol. 3: 4-9. https://doi.org/10.1007/BF02032806
  20. Gerlits OO, Coates L, Woods RJ, Kovalevsky A. 2017. Mannobiose binding induces changes in hydrogen bonding and protonation states of acidic residues in concanavalin A as revealed by neutron crystallography. Biochemistry 56: 4747-4750. https://doi.org/10.1021/acs.biochem.7b00654
  21. Kadirvelraj R, Foley BL, Dyekjaer JD, Woods RJ. 2008. Involvement of water in carbohydrate-protein binding: concanavalin A revisited. J. Am. Chem. Soc. 130: 16933-16942. https://doi.org/10.1021/ja8039663
  22. Jain D, Kaur KJ, Salunke DM. 2001. Plasticity in proteinpeptide recognition: crystal structures of two different peptides bound to concanavalin A. Biophys. J. 80: 2912-2921. https://doi.org/10.1016/S0006-3495(01)76256-X
  23. Christie DJ, Munske GR, Appel DM, Magnuson JA. 1980. Conformational changes following Mn(II) binding to demetalized concanavalin A. Biochem. Biophys. Res. Commun. 95: 1043-1048. https://doi.org/10.1016/0006-291X(80)91578-8
  24. Sinha S, Mitra N, Kumar G, Bajaj K, Surolia A. 2005. Unfolding studies on soybean agglutinin and concanavalin A tetramers: a comparative account. Biophys. J. 88: 1300-1310. https://doi.org/10.1529/biophysj.104.051052

Cited by

  1. Multi-Step Concanavalin A Phase Separation and Early-Stage Nucleation Monitored Via Dynamic and Depolarized Light Scattering vol.9, pp.12, 2019, https://doi.org/10.3390/cryst9120620
  2. Concanavalin A targetingN-linked glycans in spike proteins influence viral interactions vol.49, pp.39, 2018, https://doi.org/10.1039/d0dt02932g