References
- Chu ng NJ, Park YR, Lee DH, Oh SY, Park JH, Lee SJ. 2017. Heterometal-coordinated monomeric concanavalin A at pH7.5 from Canavalia ensiformis. J. Microbiol. Biotechnol. 27: 2241-2244. https://doi.org/10.4014/jmb.1709.09057
- Ki m D, Lee HM, Oh KS, Ki AY, Protzman RA, Kim D, et al. 2017. Exploration of the metal coordination region of concanavalin A for its interaction with human norovirus. Biomaterials 128: 33-43. https://doi.org/10.1016/j.biomaterials.2017.03.006
- D erewenda Z, Yariv J, Helliwell JR, Kalb AJ, Dodson EJ, Papiz MZ, et al. 1989. The structure of the saccharidebinding site of concanavalin A. EMBO J. 8: 2189-2193. https://doi.org/10.1002/j.1460-2075.1989.tb08341.x
- Sanders JN, Chenoweth SA, Schwarz FP. 1998. Effect of metal ion substitutions in concanavalin A on the binding of carbohydrates and on thermal stability. J. Inorg. Biochem. 70: 71-82. https://doi.org/10.1016/S0162-0134(98)00016-6
- Bezerra GA, Oliveira TM, Moreno FB, De Souza EP, Da Rocha BA, Benevides RG, et al. 2007. Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: new insights into the understanding of the structure-biological activity relationship in legume lectins. J. Struct. Biol. 160: 168-176. https://doi.org/10.1016/j.jsb.2007.07.012
- Kaushik S, Mohanty D, Surolia A. 2009. The role of metal ions in substrate recognition and stability of concanavalin A: a molecular dynamics study. Biophys. J. 96: 21-34. https://doi.org/10.1529/biophysj.108.134601
- M agnuson JA, Alter GM, Appel DM, Christie DJ, Munske GR, Pandolfino ER. 1983. Metal ion binding to concanavalin A. J. Biosci. 5: 9-17. https://doi.org/10.1007/BF02702969
-
M oothoo DN, Naismith JH. 1998. Concanavalin A distorts the
${\beta}-GlcNAc-(1{\rightarrow}2)$ -Man linkage of${\beta}-GlcNAc-(1{\rightarrow}2)-{\alpha}-Man-(1{\rightarrow}3)-[{\beta}-GlcNAc-(1{\rightarrow}2)-{\alpha}-Man-(1{\rightarrow}6)]$ -Man upon binding. Glycobiology 8: 173-181. https://doi.org/10.1093/glycob/8.2.173 - Naismith JH, Habash J, Harrop SJ, Helliwell JR, Hunter WN, Wan TC, et al. 1993. Refined structure of cadmium-substituted concanavalin A at 2.0A resolution. Acta Crystallogr. D. Biol. Crystallogr. 49: 561-571. https://doi.org/10.1107/S0907444993006390
- Bouckaert J, Loris R, Wyns L. 2000. Zinc/calcium- and cadmium/cadmium-substituted concanavalin A: interplay of metal binding, pH and molecular packing. Acta Crystallogr. D. Biol. Crystallogr. 56: 1569-1576. https://doi.org/10.1107/S0907444900013342
- Bouckaert J, Poortmans F, Wyns L, Loris R. 1996. Sequential structural changes upon zinc and calcium binding to metalfree concanavalin A. J. Biol. Chem. 271: 16144-16150. https://doi.org/10.1074/jbc.271.27.16144
-
E mmerich C, Helliwell JR, Redshaw M, Naismith JH, Harrop SJ, Raftery J, et al. 1994. High-resolution structures of single-metal-substituted concanavalin A: the Co, Ca-protein at 1.6
${\AA}$ and the Ni, Ca-protein at 2.0${\AA}$ . Acta Crystallogr. D. Biol. Crystallogr. 50: 749-756. https://doi.org/10.1107/S0907444994002143 - Kabsch W. 2010. Xds. Acta Crystallogr. D. Biol. Crystallogr. 66: 125-132. https://doi.org/10.1107/S0907444909047337
- Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497. https://doi.org/10.1016/0022-2836(68)90205-2
- M cCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40: 658-674. https://doi.org/10.1107/S0021889807021206
- Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
- Laskowski RA, MacArthur MW, Thornton JM. 1998. Validation of protein models derived from experiment. Curr. Opin. Struct. Biol. 8: 631-639. https://doi.org/10.1016/S0959-440X(98)80156-5
- Bouckaert J, Dewallef Y, Poortmans F, Wyns L, Loris R. 2000. The structural features of concanavalin A governing non-proline peptide isomerization. J. Biol. Chem. 275: 19778-19787. https://doi.org/10.1074/jbc.M001251200
- Doyle R, Keller K. 1984. Lectins in diagnostic microbiology. Eur. J. Clin. Microbiol. 3: 4-9. https://doi.org/10.1007/BF02032806
- Gerlits OO, Coates L, Woods RJ, Kovalevsky A. 2017. Mannobiose binding induces changes in hydrogen bonding and protonation states of acidic residues in concanavalin A as revealed by neutron crystallography. Biochemistry 56: 4747-4750. https://doi.org/10.1021/acs.biochem.7b00654
- Kadirvelraj R, Foley BL, Dyekjaer JD, Woods RJ. 2008. Involvement of water in carbohydrate-protein binding: concanavalin A revisited. J. Am. Chem. Soc. 130: 16933-16942. https://doi.org/10.1021/ja8039663
- Jain D, Kaur KJ, Salunke DM. 2001. Plasticity in proteinpeptide recognition: crystal structures of two different peptides bound to concanavalin A. Biophys. J. 80: 2912-2921. https://doi.org/10.1016/S0006-3495(01)76256-X
- Christie DJ, Munske GR, Appel DM, Magnuson JA. 1980. Conformational changes following Mn(II) binding to demetalized concanavalin A. Biochem. Biophys. Res. Commun. 95: 1043-1048. https://doi.org/10.1016/0006-291X(80)91578-8
- Sinha S, Mitra N, Kumar G, Bajaj K, Surolia A. 2005. Unfolding studies on soybean agglutinin and concanavalin A tetramers: a comparative account. Biophys. J. 88: 1300-1310. https://doi.org/10.1529/biophysj.104.051052
Cited by
- Multi-Step Concanavalin A Phase Separation and Early-Stage Nucleation Monitored Via Dynamic and Depolarized Light Scattering vol.9, pp.12, 2019, https://doi.org/10.3390/cryst9120620
- Concanavalin A targetingN-linked glycans in spike proteins influence viral interactions vol.49, pp.39, 2018, https://doi.org/10.1039/d0dt02932g