References
- Li Y, Cao S, Zhang L, Lau GW, Wen Y, Wu R, et al. 2016. A TolC-like protein of Actinobacillus pleuropneumoniae is involved in antibiotic resistance and biofilm formation. Front. Microbiol. 7: 1618.
- Bosse JT, Soares-Bazzolli DM, Li Y, Wren BW, Tucker AW, Maskell DJ, et al. 2014. The generation of successive unmarked mutations and chromosomal insertion of heterologous genes in Actinobacillus pleuropneumoniae using natural transformation. PLoS One 9: e111252. https://doi.org/10.1371/journal.pone.0111252
- Cuccui J, Terra VS, Bosse JT, Naegeli A, Abouelhadid S, Li Y, et al. 2017. The N-linking glycosylation system from Actinobacillus pleuropneumoniae is required f or adhesion and has potential use in glycoengineering. Open Biol. 7.
- Zhu Z, Zhao Q, Zhao Y, Zhang F, Wen X, Huang X, et al. 2017. Polyamine-binding protein PotD2 is required for stress tolerance and virulence in Actinobacillus pleuropneumoniae. Antonie van Leeuwenhoek 110: 1647-1657. https://doi.org/10.1007/s10482-017-0914-7
- Sarkozi R, Makrai L, Fodor L. 2015. Identification of a proposed new serovar of Actinobacillus pleuropneumoniae: serovar 16. Acta Vet. Hung. 63: 444-450. https://doi.org/10.1556/004.2015.041
- Bossee J, Li Y, Sarkozi R, Fodor L, Lacouture S, Gottschalk M, et al. 2018. Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Vet. Microbiol. 217: 1-6. https://doi.org/10.1016/j.vetmic.2018.02.019
- Oldfield NJ, Donovan EA, Worrall KE, Wooldridge KG, Langford PR, Rycroft AN, et al. 2008. Identification and characterization of novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae. Vaccine 26: 1942-1954. https://doi.org/10.1016/j.vaccine.2008.02.022
- Chiang CH, Huang WF, Huang LP, Lin SF, Yang WJ. 2009. Immunogenicity and protective efficacy of ApxIA and ApxIIA DNA vaccine against Actinobacillus pleuropneumoniae lethal challenge in murine model. Vaccine 27: 4565-4570. https://doi.org/10.1016/j.vaccine.2009.05.058
- Lu YC, Li MC, Chen YM, Chu CY, Lin SF, Yang WJ. 2011. DNA vaccine encoding type IV pilin of Actinobacillus pleuropneumoniae induces strong immune response but confers limited protective efficacy against serotype 2 challenge. Vaccine 29: 7740-7746. https://doi.org/10.1016/j.vaccine.2011.07.127
- Bei W , He Q , Zhou R, Yan L, H uang H, C hen H. 2007. Evaluation of immunogenicity and protective efficacy of Actinobacillus pleuropneumoniae HB04C(-) mutant lacking a drug resistance marker in the pigs. Vet. Microbiol. 125: 120-127. https://doi.org/10.1016/j.vetmic.2007.05.013
- Chen DJ, Langer R. 2010. Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc. Natl. Acad. Sci. USA 107: 3099-3104. https://doi.org/10.1073/pnas.0805532107
- Abbas AK, Lichtman AH, Pillai S. 2012. Basic Immunology, pp. 36-42. Ed. Saunders.
- Schwechheimer C, Kuehn MJ. 2015. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13: 605-619. https://doi.org/10.1038/nrmicro3525
- Schertzer JW, Whiteley M. 2012. A bilayer-couple model of bacterial outer membrane vesicle biogenesis. MBio 3: 203-216.
- Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64: 163-184. https://doi.org/10.1146/annurev.micro.091208.073413
- Mashburn-Warren LM, Whiteley M. 2006. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol. 61: 839-846. https://doi.org/10.1111/j.1365-2958.2006.05272.x
- Kuehn MJ, Kesty NC. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19: 2645-2655. https://doi.org/10.1101/gad.1299905
- Lee EY, Choi DS, Kim KP, Yong SG. 2008. Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom. Rev. 27: 535-555. https://doi.org/10.1002/mas.20175
- Fulsundar S, Harms K, Flaten GE, Johnsen PJ, Chopade BA, Nielsen KM. 2014. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl. Environ. Microbiol. 80: 3469-3483. https://doi.org/10.1128/AEM.04248-13
- Yaron S, Kolling GL, Simon L, Matthews KR. 2000. Vesiclemediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66: 4414-4420. https://doi.org/10.1128/AEM.66.10.4414-4420.2000
- Schooling SR, Beveridge TJ. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188: 5945-5957. https://doi.org/10.1128/JB.00257-06
- van der Pol L, Stork M, van der Ley P. 2015. Outer membrane vesicles as platform vaccine technology. Biotechnol. J. 10: 1689-1706. https://doi.org/10.1002/biot.201400395
- Ellis TN, Kuehn MJ. 2010. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74: 81-94. https://doi.org/10.1128/MMBR.00031-09
- Kleijn EDD, Groot RD, Labadie J, Lafeber AB, Dobbelsteen GVD, Alphen LV, et al. 2000. Immunogenicity and safety of a hexavalent meningococcal outer-membrane-vesicle vaccine in children of 2-3 and 7-8 years of age. Vaccine 18: 1456-1466. https://doi.org/10.1016/S0264-410X(99)00423-5
- Sandbu S, Feiring B, Oster P, Helland OS, Bakke HSW, Næss LM, et al. 2007. Immunogenicity and safety of a combination of two serogroup B meningococcal outer membrane vesicle vaccines. Clin. Vaccine Immunol. 14: 1062-1069. https://doi.org/10.1128/CVI.00094-07
- Wai SN, Lindmark B, Söderblom T, Takade A, Westermark M, Oscarsson J, et al. 2003. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115: 25-35. https://doi.org/10.1016/S0092-8674(03)00754-2
- Rappazzo CG, Watkins HC, Guarino CM, Chau A, Lopez JL, Delisa MP, et al. 2016. Recombinant M2e outer membrane vesicle vaccines protect against lethal influenza A challenge in BALB/c mice. Vaccine 34: 1252-1258. https://doi.org/10.1016/j.vaccine.2016.01.028
- Huang W, Wang S, Yao Y, Xia Y, Yang X, Li K, et al. 2016. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection. Sci. Rep. 6: 37242. https://doi.org/10.1038/srep37242
- Zhang F , Cao S, Z hu Z, Yang Y , Wen X , Chang YF, et al. 2016. Immunoprotective efficacy of six in vivo-induced antigens against Actinobacillus pleuropneumoniae as potential vaccine candidates in murine model. Front. Microbiol. 7: 728-732.
- Zhang F, Zhang Y, Wen X, Huang X, Wen Y, Wu R, et al. 2015. Identification of Actinobacillus pleuropneumoniae genes preferentially expressed during infection using in vivoinduced antigen technology (IVIAT). J. Microbiol. Biotechnol. 25: 1606-1613. https://doi.org/10.4014/jmb.1504.04007
- Zhang F, Zhao Q, Quan K, Zhu Z, Yang Y, Wen X, et al. 2018. Galactose-1-phosphate uridyltransferase (GalT), an in vivo-induced antigen of Actinobacillus pleuropneumoniae serovar 5b strain L20, provided immunoprotection against serovar 1 strain MS71. PLoS One 13: e0198207. https://doi.org/10.1371/journal.pone.0198207
- Kim JY, Doody AM, Chen DJ, Cremona GH, Putnam D, Delisa MP. 2008. Engineered bacterial outer membrane vesicles with enhanced functionality. J. Mol. Biol. 380: 51-66. https://doi.org/10.1016/j.jmb.2008.03.076
- Fu S, Zhang M, Xu J, Ou J, Wang Y, Liu H, et al. 2012. Immunogenicity and protective efficacy of recombinant Haemophilus parasuis SH0165 putative outer membrane proteins. Vaccine 31: 347-353.
- Li M, Song S, Yang D, Li C, Li G. 2015. Identification of secreted proteins as novel antigenic vaccine candidates of Haemophilus parasuis serovar 5. Vaccine 33: 1695-1701. https://doi.org/10.1016/j.vaccine.2015.02.023
- Oh Y, Ha Y, Han K, Seo HW, Kang I, Park C, et al. 2013. Expression of leucocyte function-associated antigen-1 and intercellular adhesion molecule-1 in the lungs of pigs infected with Actinobacillus pleuropneumoniae. J. Comp. Pathol. 148: 259-265. https://doi.org/10.1016/j.jcpa.2012.06.002
- Bachmann MF, Jennings GT. 2010. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10: 787-796. https://doi.org/10.1038/nri2868
- Mccaig WD, Loving CL, Hughes HR, Brockmeier SL. 2016. Characterization and vaccine potential of outer membrane vesicles produced by Haemophilus parasuis. PLoS One 11: e0149132. https://doi.org/10.1371/journal.pone.0149132
- Stevenson TC, Cywesbentley C, Moeller TD, Weyant KB, Putnam D, Chang YF, et al. 2018. Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proc. Natl. Acad. Sci. USA 115: 201718341.
- Asensio CJ, Gaillard ME, Moreno G, Bottero D, Zurita E, Rumbo M, et al. 2011. Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 29: 1649-1656. https://doi.org/10.1016/j.vaccine.2010.12.068
- Sierra GV, Campa HC, Varcacel NM, Garcia IL, Izquierdo PL, Sotolongo PF, et al. 1991. Vaccine against g roup B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH Ann 14: 195-207.
- Xu K, Zhao Q, Wen X, Wu R, Wen Y, Huang X, et al. 2018. A trivalent Apx-fusion protein delivered by E. coli o u ter membrane vesicles induce protection against Actinobacillus pleuropneumoniae of serotype 1 and 7 challenge in a murine model. PLoS One 13: e0191286. https://doi.org/10.1371/journal.pone.0191286
- Zhao K, Deng X, He C, Yue B, Wu M. 2013. Pseudomonas aeruginosa outer membrane vesicles modulate host immune responses by targeting the toll-like receptor 4 signaling pathway. Infect. Immun. 81: 4509-4518. https://doi.org/10.1128/IAI.01008-13
- Fransen F, Stenger RM, Poelen MC, van Dijken HH, Kuipers B, Boog CJ, et al. 2010. Differential effect of TLR2 and TLR4 on the immune response after immunization with a vaccine against Neisseria meningitidis or Bordetella pertussis. PLoS One 5: e15692. https://doi.org/10.1371/journal.pone.0015692
- Chen L, Valentine JL, Huang CJ, Endicott CE, Moeller TD, Rasmussen JA, et al. 2016. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies. Proc. Natl. Acad. Sci. USA 113: E3609-3618. https://doi.org/10.1073/pnas.1518311113
- Kim SH, Kim KS, Lee SR, Kim E, Kim MS, Lee EY, et al. 2009. Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles. Biochim. Biophys. Acta 1788: 2150-2159. https://doi.org/10.1016/j.bbamem.2009.08.001
Cited by
- The Importance of Porins and β-Lactamase in Outer Membrane Vesicles on the Hydrolysis of β-Lactam Antibiotics vol.21, pp.8, 2020, https://doi.org/10.3390/ijms21082822
- Significant increase in the secretion of extracellular vesicles and antibiotics resistance from methicillin-resistant Staphylococcus aureus induced by ampicillin stress vol.10, pp.1, 2018, https://doi.org/10.1038/s41598-020-78121-8