DOI QR코드

DOI QR Code

Development Status of Crowdsourced Ground Vibration Data Collection System Based on Micro-Electro-Mechanical Systems (MEMS) Sensor

MEMS 센서 기반 지반진동 정보 크라우드소싱 수집시스템 개발 현황

  • Lee, Sangho (Geoscience Platform Division, Korea Institute of Geoscience and Mining Resources) ;
  • Kwon, Jihoe (Geoscience Platform Division, Korea Institute of Geoscience and Mining Resources) ;
  • Ryu, Dong-Woo (Geoscience Platform Division, Korea Institute of Geoscience and Mining Resources)
  • 이상호 (한국지질자원연구원 지오플랫폼연구본부) ;
  • 권지회 (한국지질자원연구원 지오플랫폼연구본부) ;
  • 류동우 (한국지질자원연구원 지오플랫폼연구본부)
  • Received : 2018.12.04
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

Using crowdsourced sensor data collection technique, it is possible to collect high-density ground vibration data which is difficult to obtain by conventional methods. In this study, we have developed a crowdsourced ground vibration data collection system using MEMS sensors mounted on small electronic devices including smartphones, and implemented client and server based on the proposed infrastructure system design. The system is designed to gather vibration data quickly through Android-based smartphones or fixed devices based on Android Things, minimizing the usage of resource like power usage and data transmission traffic of the hardware.

크라우드소싱을 활용한 센서 자료 수집은 기존의 방식으로 얻기 어려운 고밀도 지반 진동 정보의 수집이 가능하다. 본 연구에서는 스마트폰과 같은 소형 전자기기에 탑재된 MEMS 센서를 활용한 크라우드소싱 방식 지반 진동 수집 시스템을 개발하였으며, 이를 위한 기반 체계 설계 및 클라이언트와 서버에 대한 구현을 수행하였다. 해당 시스템은 Android 기반의 스마트폰이나 Android Things 기반의 고정식 장비를 통해 진동 데이터를 신속히 수집하면서 하드웨어의 전력 및 데이터 사용량을 최소화할 수 있도록 설계되었다.

Keywords

OBGHBQ_2018_v28n6_547_f0001.png 이미지

Fig. 1. Overall server-client data flow diagram of proposed data collection system

OBGHBQ_2018_v28n6_547_f0002.png 이미지

Fig. 2. Data and message handling procedure during ground vibration event

OBGHBQ_2018_v28n6_547_f0003.png 이미지

Fig. 3. Result of battery voltage measurement with sensor activated for 2 hours in every 8 hours

Table 1. Comparison of major functionalities between MyShake, Earthquake Network (EN) and proposed system

OBGHBQ_2018_v28n6_547_t0001.png 이미지

References

  1. Cartwright, J., 2016, Technology: smartphone science, Nature 531.7596, 669-671. https://doi.org/10.1038/nj7596-669a
  2. Clayton, R. W., T. Heaton, M. Chandy, A. K. Krause, M. Kohler, J. Bunn, R. Guy, M. Olson, M. Faulkner, M. Cheng, L. Strand, R. Chandy, D. Obenshain, A. Liu and M. Aivazis, 2011, Community Seismic Network, Ann. Geophys. 54, 738-747.
  3. Cochran, E., J. Lawrence, C. Christensen and A. Chung, 2009, A novel strong-motion seismic network for community participation in earthquake monitoring, IEEE Instrum. Meas. Mag. 12, 8-15.
  4. D'Alessandro, A., D. Luzio and G. D'Anna, 2014, Urban MEMS based seismic network for post-earthquakes rapid disaster assessment, Adv. Geosci. 40.40, 1-9. https://doi.org/10.5194/adgeo-40-1-2014
  5. Dunn, P. T., A. Y. Ahn, A. Bostrom and J. E. Vidale, 2016, Perceptions of earthquake early warnings on the US West Coast, Int. J. Disast. Risk Re. 20, 112-122.
  6. Feng, M., Y. Fukuda, M. Mizuta and E. Ozer, 2015, Citizen sensors for SHM: Use of accelerometer data from smartphones, Sensors 15.2, 2980-2998. https://doi.org/10.3390/s150202980
  7. Finazzi, F. and Fasso, A., 2017, A statistical approach to crowdsourced smartphone-based earthquake early warning systems, Stoch. Env. Res. Risk A. 31.7, 1649-1658. https://doi.org/10.1007/s00477-016-1240-8
  8. Finazzi, F., 2016, The earthquake network project: Toward a crowdsourced smartphone-based earthquake early warning system, B. Seismol. Soc. Am. 106.3, 1088-1099. https://doi.org/10.1785/0120150354
  9. Haddadi, H., A. Shakal, M. Huang, J. Parrish, C. Stephens, W. Savage and W. Leith, 2012, Report on progress at the center for engineering strong motion data (CESMD), In Proc. World Conf. Earthq. Eng., Lisbon, 1-7.
  10. Hsieh, C. Y., Y. M. Wu, T. L. Chin, K. H. Kuo, D. Y. Chen, K, S, Wang, Y. T. Chan, W. Y. Chang, W. S. Li and S. H. Ker, 2014, Low Cost Seismic Network Practical Applications for Producing Quick Shaking Maps in Taiwan. Terr. Atmos. Ocean. Sci. 25.5, 617-624. https://doi.org/10.3319/TAO.2014.03.27.01(T)
  11. InvenSense, 2014, MPU-6500 Product Specification Revision 1.1.
  12. Kim, Y., T. S. Kang and J. Rhie, 2017, Development and Application of a Real-Time Warning System Based on a MEMS Seismic Network and Response Procedure for the Day of the National College Entrance Examination in South Korea, Seismol. Res. Lett. 88.5, 1322-1326. https://doi.org/10.1785/0220160208
  13. Kong, Q., Allen, R. M., Schreier, L. and Y. W. Kwon, 2016a, MyShake: A smartphone seismic network for earthquake early warning and beyond, Science Adv. 2.2, e1501055. https://doi.org/10.1126/sciadv.1501055
  14. Kong, Q., R. M. Allen and L. Schreier, 2016b, MyShake: Initial observations from a global smartphone seismic network, Geophys. Res. Lett. 43.18, 9588-9594. https://doi.org/10.1002/2016GL070955
  15. Krizhevsky, A., I. Sutskever and G. E. Hinton, 2012, Imagenet classification with deep convolutional neural networks, In Adv. Neur. In. 1097-1105.
  16. Pierleoni, P., S. Marzorati, C. Ladina, S. Raggiunto, A. Belli, L. Palma, M. Cattaneo and S. Valenti, 2018, Performance Evaluation of a Low-Cost Sensing Unit for Seismic Applications: Field Testing During Seismic Events of 2016-2017 in Central Italy, IEEE Sens. J. 18.16, 6644-6659. https://doi.org/10.1109/JSEN.2018.2850065
  17. Qiuping, W., Z. Shunbing and D. Chunquan, 2011, Study on key technologies of Internet of Things perceiving mine, Procedia Engineer. 26, 2326-2333. https://doi.org/10.1016/j.proeng.2011.11.2442
  18. Shrestha, A., J. Dang and X. Wang, 2018, Development of a smart-device-based vibration-measurement system: Effectiveness examination and application cases to existing structure. Struct. Control Health Monit. 25.3, e2120. https://doi.org/10.1002/stc.2120
  19. Yang, D., G. Xue, X. Fang and J. Tang, 2012, Crowdsourcing to smartphones: incentive mechanism design for mobile phone sensing. In Proc. Int. Conf. Mob. Comp. Networking, Istanbul, 173-184.
  20. Zambrano, A. M., I. Perez, C. Palau and M. Esteve, 2017, Technologies of internet of things applied to an earthquake early warning system, Future Gener. Comp. Sy. 75, 206-215. https://doi.org/10.1016/j.future.2016.10.009