DOI QR코드

DOI QR Code

Effects of the Mixing Method and Sintering Temperature on the Characteristics of PZNN-PZT Piezoelectric Ceramic Materials

합성방법과 소결 온도가 PZNN-PZT 압전 세라믹스 소재특성에 미치는 영향

  • Kim, So Won (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Jeong, Yong Jeong (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Lee, Hee Chul (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • 김소원 (한국산업기술대학교 신소재공학과) ;
  • 정용정 (한국산업기술대학교 신소재공학과) ;
  • 이희철 (한국산업기술대학교 신소재공학과)
  • Received : 2018.11.02
  • Accepted : 2018.12.17
  • Published : 2018.12.28

Abstract

The impact of different mixing methods and sintering temperatures on the microstructure and piezoelectric properties of PZNN-PZT ceramics is investigated. To improve the sinterability and piezoelectric properties of these ceramics, the composition of $0.13Pb((Zn_{0.8}Ni_{0.2})_{1/3}Nb_{2/3})O_3-0.87Pb(Zr_{0.5}Ti_{0.5})O_3$ (PZNN-PZT) containing a Pb-based relaxor component is selected. Two methods are used to create the powder for the PZNN-PZT ceramics. The first involves blending all source powders at once, followed by calcination. The second involves the preferential creation of columbite as a precursor, by reacting NiO with $Nb_2O_5$ powder. Subsequently, PZNN-PZT powder can be prepared by mixing the columbite powder, PbO, and other components, followed by an additional calcination step. All the PZNN-PZT powder samples in this study show a nearly-pure perovskite phase. High-density PZNN-PZT ceramics can be fabricated using powders prepared by a two-step calcination process, with the addition of 0.3 wt% MnO2 at even relatively low sintering temperatures from $800^{\circ}C$ to $1000^{\circ}C$. The grain size of the ceramics at sintering temperatures above $900^{\circ}C$ is increased to approximately $3{\mu}m$. The optimized PZNN-PZT piezoelectric ceramics show a piezoelectric constant ($d_{33}$) of 360 pC/N, an electromechanical coupling factor ($k_p$) of 0.61, and a quality factor ($Q_m$) of 275.

Keywords

References

  1. M. P. Zheng, Y. D. Hou, H. Y. Ge, M. K. Zhu and H. Yan: J. Eur. Ceram. Soc., 33 (2013) 1447. https://doi.org/10.1016/j.jeurceramsoc.2012.12.025
  2. X. Zeng, X. He, W. Cheng, X. Zheng and P. Qiu: J. Alloys Compd., 485 (2009) 843. https://doi.org/10.1016/j.jallcom.2009.06.106
  3. H. L. Li, Y. Zhang, J. J. Zhou, X. W. Zhang, H. Liu and J. Z. Fang: Ceram. Int., 41 (2015) 4822. https://doi.org/10.1016/j.ceramint.2014.12.038
  4. L. D. Vuong, P. D. Gio, T. V. Chuong, D. T. H. Trang, D. V. Hung and N. T. Duong: Int. J. Mat. Chem., 3 (2013) 39.
  5. S. B. Seo, S. H. Lee, C. B. Yoon, G. T. Park and H. E. Kim: J. Am. Ceram. Soc., 87 (2004) 1238. https://doi.org/10.1111/j.1551-2916.2004.tb20095.x
  6. S. M. Lee, S. H. Lee, C. B. Yoon, H. E. Kim and K. W. Lee: J. Electroceram., 18 (2007) 311. https://doi.org/10.1007/s10832-007-9174-7
  7. N. Vittayakorn, C. Puchmark, G. Rujijanagul, X. Tan and D. P. Cann: Curr. Appl. Phys., 6 (2006) 303. https://doi.org/10.1016/j.cap.2005.11.005
  8. E. S. Na and S. C. Choi: J. Kor. Ceram. Soc., 36 (1999) 1235.
  9. S. H. Lee, C. B. Yoon, S. M. Lee and H. E. Kim: J. Eur. Ceram. Soc., 26 (2006) 111. https://doi.org/10.1016/j.jeurceramsoc.2004.10.005
  10. L. Srisombat, O. Khamman, R. Yimnirun, S. Ananta and T. R. Lee: Chiang Mai J. Sci., 36 (2009) 69.
  11. J. H. Yoo, Y. J. Kim, H. Y. Cho and Y. H. Jeong: Sens. Actuators, A, 255 (2017) 160. https://doi.org/10.1016/j.sna.2016.12.020
  12. M. C. Chure, P. C. Chen, L. Wu, B. H. Chen and K. K. Wu: Adv. Mat. Res., 284 (2011) 1375.
  13. R. Bjork, V. Tidare, H. L. Frandsen and N. Pryds: J. Am. Ceram. Soc., 96 (2013) 103. https://doi.org/10.1111/jace.12100
  14. H. Fan and H. E. Kim: J. Appl. Phys., 91 (2002) 317. https://doi.org/10.1063/1.1421036
  15. Y. S. Kim, J. D. Han, J. H. Yoo and Y. H. Jeong: J. Korean Inst. Electr. Electron. Mater. Eng., 29 (2016) 608.
  16. G. Peng, C. Chen, J. Zhang, D. Zheng, S. Hu and H. Zhang: J. Mater. Sci: Mater. Electron., 27 (2016) 3145. https://doi.org/10.1007/s10854-015-4136-3
  17. E. M. Alkoy, M. Y. Kaya, D. Avdan and S. Alkoy: IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 63 (2016) 907. https://doi.org/10.1109/TUFFC.2016.2554319
  18. N. D. T. Luan, L. D. Vuong and B. C. Chanh: Int. J. Mat. Chem., 3 (2013) 51.
  19. C. W. Ahn, H. C. Song, S. H. Park, S. Nahm, K. Uchino, S. Priya, H. G. Lee and N. K. Kang: Jpn. J. Appl. Phys., 44 (2005) 1314. https://doi.org/10.1143/JJAP.44.1314