• Title/Summary/Keyword: low-temperature sintering

Search Result 757, Processing Time 0.033 seconds

Characteristics of PMN-PZ-PT Thick Film Ceramic by Low-Temperature Sintering Aids (저온 소결 조제에 따른 PMN-PZ-PT 후막 세라믹 특성)

  • Jung, Myungwon;Jeon, Dae-Woo;Kim, Jin-Ho;Lee, Youngjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.476-482
    • /
    • 2016
  • Convectional PZT based piezoelectric ceramics have to sinter at high temperature about $1,200^{\circ}C$ for their suitable electrical properties. However, some issues: low temperature sintering piezoelectric ceramic composition and reliable internal electrode, have recently attracted a great deal of interest as a highly efficient multi-layered piezoelectric ceramics. In order to optimize low temperature sintering conditions of thick-film PMN-PZ-PT ceramic, it was investigated sintering and piezoelectric properties according to the change of $LiBiO_2$ contents. Thus, the superior piezoelectric properties were found at the pallet type PMN-PZ-PT optimized with low sintering processing at $925^{\circ}C$ including 7 wt% $LiBiO_2$ sintering aid. Consequentially, we successfully manufactured thick-film PMN-PZ-PT ceramics, which had superior piezoelectric and dielectric properties, with 5 wt% of $LiBiO_2$ sintering aid at temperature of $900^{\circ}C$.

Factors Influencing the Camber of Cofired Resistor/Low Temperature Cofired Ceramics (LTCC) Bi-Layers (동시 소성된 저항/저온 동시 소성 세라믹(LTCC) 이중층의 캠버에 영향을 미치는 인자)

  • Ok Yeon Hong;Seok-Hong Min
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.537-549
    • /
    • 2023
  • The sintering shrinkage behaviors of low temperature cofired ceramics (LTCC) and resistors were compared using commercial LTCC and thick-film resistor pastes, and factors influencing the camber of cofired resistor/LTCC bi-layers were also investigated. The onset of sintering shrinkage of the resistor occurred earlier than that of LTCC in all resistors, but the end of sintering shrinkage of the resistor occurred earlier or later than that of LTCC depending on the composition of the resistor. The sintering shrinkage end temperature and the sintering shrinkage temperature interval of the resistor increased as the RuO2/glass volume ratio of the resistor increased. The camber of cofired resistor/LTCC bi-layers was obtained using three different methods, all of which showed nearly identical trends. The camber of cofired resistor/LTCC bi-layers was not affected by either the difference in linear shrinkage strain after sintering between LTCC and resistors or the similarity of sintering shrinkage temperature ranges of LTCC and resistors. However, it was strongly affected by the RuO2/glass volume ratio of the resistor. The content of Ag and Pd had no effect on the sintering shrinkage end temperature or sintering shrinkage temperature interval of the resistor, or on the camber of cofired resistor/LTCC bi-layers.

Low-Temperature Sintering and Microwave Dielectric Properties of $(ZnMg)TiO_3$ System ($(ZHMg)TiO_3$계 세라믹스의 저온소결과 마이크로파 유전특성)

  • Sim, Woo-Sung;Bang, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.321-324
    • /
    • 2003
  • The effects of various sintering additives such as $Bi_2O_3+V_2O_5$, $BiVO_4$, $B_2O_3$, and $CuO+V_2O_5$ on the low-temperature sintering and microwave dielectric properties of $(ZnMg)TiO_3$ system were studied. Sintering was enhanced by the sintering additives and highly dense samples were obtained for $(Zn_{0.8}Mg_{0.2})TiO_3$ at the sintering temperature of $910^{\circ}C$. $(Zn_{0.8}Mg_{0.2})TiO_3$ with 6.19 mol.%$B_2O_3$ was found to show the best sintering and microwave dielectric properties.

  • PDF

PZTN Sintered at the Low Temperature by the Glass Phase Transient Processing (글래스 천이 공정에 의해 저온소결된 PZTN)

  • Kim Chan Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.97-102
    • /
    • 2005
  • This research was a fundamental study for the low temperature sintering of PZTN by glass phase transient processing. To lower the sintering temperature, the glass phase Processing was used. Also to improve the electrical properties, the transient processing was utilized. After characterization, the various analytic techniques, such as Archimedes method for the measuring densification, x-ray diffraction patterns for the quantitative analysis of crystalline phases were utilized. Also the dielectric constant, dissipation factor, and piezoelectric coefficients were measured to evaluate the PZTN sintered at the $950^{\circ}C$ and $1050^{\circ}C$. This was confirmed that the sintering temperature of PZTN was reduced by $950^{\circ}C$ and the electrical properties were improved by the transition processing. Therefore, the glass phase transient processing can be applicable to low the sintering temperature with the dielectric and piezoelectric properties.

Development of Ultra-high Capacitance MLCC through Low Temperature Sintering (저온소결을 통한 초고용량 MLCC 개발)

  • Sohn, Sung-Bum;Kim, Hyo-Sub;Song, Soon-Mo;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.146-154
    • /
    • 2009
  • It is necessary to minimize the thickness of Ni inner electrode layer and to improve the coverage of inner electrode, for the purpose of developing the ultra high-capacity multi layered ceramic capacitor (MLCC). Thus, low temperature sintering of dielectric $BaTiO_3$ ceramic should be precedently investigated. In this work, the relationship between dielectric properties of MLCC and batch condition such as mixing and milling methods was investigated in the $BaTiO_3$(BT)-Dy-Mg-Ba system with borosilicate glass as a sintering agent. In addition, several chip properties of MLCC manufactured by low temperature sintering were compared with conventionally manufactured MLCC. It was found that low temperature sintered MLCC showed better DC-bias property and lower aging rate. It was also confirmed that the thickness of Ni inner electrode layer became thinner and the coverage of inner electrode was improved through low temperature sintering.

Electrical Properties of Rosen Type piezoelectric transformers using Low Temperature Sintering PMN-PNN-PZT ceramics (저온소결 PMN-PNN-PZT계 세라믹스를 이용한 Rosen형 압전변압기의 전기적 특성)

  • Lee, Sang-Ho;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.53-53
    • /
    • 2008
  • Piezoelectric transformers have been widely used such as DC-DC convertor, invertor, Ballast, etc. Because, the y have some merits compared with electro-magnetic transformers such as step-up ratio, high efficiency, small size and lg hit weight, etc. Piezoelectric transformer require high electromechanical coupling factor kp in order to induce a large out put power in proportional to applied electric field. And also, high mechanical quality factor Qm is required to prevent mechanical loss and heat generation. In general, PZT system ceramics should be sintered at high temperatures between 1200 and $1300^{\circ}C$ in order to obtain complete densification. Accordingly, environmental pollution due to its PbO evaporation. Hence, to reduce its sintering temperature, various kinds of material processing methods such as hot pressing, high energy mill, liquid phase sintering, and using ultra fine powder have been performed. Among these methods, liquid phase sintering is basically an effective method for aiding densification at low temperature. In this study, In order to comparis on low temperature sintering and solid state sintering piezoelectric transformers, rosen type transformers were fabricated u sing two PZT ceramics compositions and their electrical properties were investigated.

  • PDF

Microstructural and piezoelectric properties of low temperature sintering PMN-PZT ceramics for multilayer piezoelectric transformer with the variations of sintering times (적층 압전변압기용 저온소결 PMN-PZT 압전세라믹의 소성시간에 따른 미세구조 및 압전특성)

  • Lee, Chang-Bae;Yoo, Ju-Hyun;Lee, Sang-Ho;Paik, Dong-Soo;Jeong, Yeong-Ho;Yoon, Hyun-Sang;Im, In-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.425-430
    • /
    • 2004
  • In this paper, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, PMN-PZT ceramics were manufactured with the variations of sintering times, and their microstructural, piezoelectric and dielectric properties were investigated. To manufacture multilayer piezoelectric transformer, the low temperature sintering composition is need, hence, $Li_2CO_3$ and $Bi_2O_3$ were used as sintering aids and the specimens were sintered during 30, 60, 90, 120, 150 and 180 minutes, respectively. At the specimen sintered during 90 minute, mechanical quality factor(Qm), electromechanical coupling factor(kp) and dielectric constant were showed the optimum values of 2356, 0.504 and 1266, respectively. All the specimens showed tetragonality phase, and pyrochlore phase was not shown.

  • PDF

Piezoelectric and Dielectric Properties of Low Temperature Sintering (K0.5Na0.5)NbO3 Ceramics according to Sintering Aid Li2CO3 (소결조제 Li2CO3 첨가에 따른 저온소결(K0.5Na0.5)NbO3 세라믹스의 압전 및 유전 특성)

  • Lee, Il-Ha;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.906-910
    • /
    • 2008
  • $(K_{0.5}Na_{0.5})NbO_3$ (NKN) ceramics doped with $Li_{2}CO_3$ as sintering aids were manufactured in order to develop the low temperature sintering ceramics for piezoelectric device. The sintering aids were proved to lower the sintering temperature of doped NKN ceramics due to the effect of $Na_{2}CO_{3}-Li_{2}CO_3$ liquid phase. All the specimens showed the orthorhombic phase without secondary phase. And also, the piezoelectric properties of specimens were improved with increasing $Li_{2}CO_3$ contents. At sintering temperature of $930^{\circ}C$, the density, electromechanical coupling factor (kp), mechanical quality factor (Qm) and dielectric constant(${\epsilon}_{\gamma}$), piezoelectric constant of 0.3 wt.% $Li_{2}CO_3$ added specimen showed the optimum values of $4.255 g/cm^3$, 0.37, 234, 309, 136 pC/N, respectively.

Microstructural and Piezoelectric Properties of Low Temperature Sintering PMN-PZT Ceramics with the Variations of Sintering Times (저온소결 PMN-PZT 압전세라믹의 소성시간에 따른 미세구조 및 압전특성)

  • Yoo, Ju-Hyun;Lee, Chang-Bae;Lee, Sang-Ho;Paik, Dong-Soo;Jeong, Yeong-Ho;Im, In-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.237-242
    • /
    • 2005
  • In this paper, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, PMN-PZT ceramics were manufactured with the variations of sintering times, and their microstructural, piezoelectric and dielectric properties were investigated. Li$_2$CO$_3$ and Bi$_2$O$_3$ were used as sintering aids and the specimens were sintered during 30, 60, 90, 120, 150, and 180 minutes, respectively. At the specimen sintered during 90 minute, mechanical quality factor(Qm), electro-mechanical coupling factor(kp) and dielectric constant were showed the optimum values of 2,356, 0.504 and 1,266, respectively.

Low Temperature Sintering Characteristics of Organic Ag Complex (유기 은 착화합물의 저온 소성 특성)

  • Kang, Min-Ki;Suh, Won-Gyu;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.431-432
    • /
    • 2008
  • We have investigated low temperature sintering characteristics of organic Ag complex. Organic Ag complex was coated on the glass substrate by spin coating method. The coated Ag complex was sintered in an air atmosphere. The sintering temperature was varied from 100 to $300^{\circ}C$ and sintering time was varied from 1 to 4 min. The thickness of the coated film was significantly decreased as the film was sintered at the temperature between 110 and $120^{\circ}C$. The sintered Ag film at temperature higher than $115^{\circ}C$ shows very low sheet resistance less than 1 ${\Omega}{/\square}$.

  • PDF