DOI QR코드

DOI QR Code

Biotransformation of Fructose to Allose by a One-Pot Reaction Using Flavonifractor plautii ᴅ-Allulose 3-Epimerase and Clostridium thermocellum Ribose 5-Phosphate Isomerase

  • Lee, Tae-Eui (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Shin, Kyung-Chul (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Oh, Deok-Kun (Department of Bioscience and Biotechnology, Konkuk University)
  • 투고 : 2017.09.21
  • 심사 : 2017.12.11
  • 발행 : 2018.03.28

초록

${\text\tiny{D}}-Allose$ is a potential medical sugar because it has anticancer, antihypertensive, antiinflammatory, antioxidative, and immunosuppressant activities. Allose production from fructose as a cheap substrate was performed by a one-pot reaction using Flavonifractor plautii ${\text\tiny{D}}-allulose$ 3-epimerase (FP-DAE) and Clostridium thermocellum ribose 5-phosphate isomerase (CT-RPI). The optimal reaction conditions for allose production were pH 7.5, $60^{\circ}C$, 0.1 g/l FP-DAE, 12 g/l CT-RPI, and 600 g/l fructose in the presence of 1 mM $Co^{2+}$. Under these optimized conditions, FP-DAE and CT-RPI produced 79 g/l allose for 2 h, with a conversion yield of 13%. This is the first biotransformation of fructose to allose by a two-enzyme system. The production of allose by a one-pot reaction using FP-DAE and CT-RPI was 1.3-fold higher than that by a two-step reaction using the two enzymes.

키워드

참고문헌

  1. Xu W, Zhang W, Zhang T, Jiang B, Mu W. 2016. $\small{L}$-Rhamnose isomerase and its use for biotechnological production of rare sugars. Appl. Microbiol. Biotechnol. 100: 2985-2992. https://doi.org/10.1007/s00253-016-7369-z
  2. Lim YR, Oh DK. 2011. Microbial metabolism and biotechnological production of $\small{D}$-allose. Appl. Microbiol. Biotechnol. 91: 229-235. https://doi.org/10.1007/s00253-011-3370-8
  3. Morimoto K, Park CS, Ozaki M, Takeshita K, Shimonishi T, Granstrom TB, et al. 2006. Large scale production of $\small{D}$-allose from $\small{D}$-psicose using continuous bioreactor and separation system. Enzyme Microb. Technol. 38: 855-859. https://doi.org/10.1016/j.enzmictec.2005.08.014
  4. Menavuvu BT, Poonperm W, Leang K, Noguchi N, Okada H, Morimoto K, et al. 2006. Efficient biosynthesis of $\small{D}$-allose from $\small{D}$-psicose by cross-linked recombinant $\small{L}$-rhamnose isomerase: separation of product by ethanol crystallization. J. Biosci. Bioeng. 101: 340-345.
  5. Poonperm W, Takata G, Okada H, Morimoto K, Granstrom TB, Izumori K. 2007. Cloning, sequencing, overexpression and characterization of $\small{L}$-rhamnose isomerase from Bacillus pallidus Y25 for rare sugar production. Appl. Microbiol. Biotechnol. 76: 1297-1307. https://doi.org/10.1007/s00253-007-1109-3
  6. Lin CJ, Tseng WC, Lin TH, Liu SM, Tzou WS, Fang TY. 2010. Characterization of a thermophilic $\small{L}$-rhamnose isomerase from Thermoanaerobacterium saccharolyticum NTOU1. J. Agric. Food Chem. 58: 10431-10436.
  7. Lin CJ, Tseng WC, Fang TY. 2011. Characterization of a thermophilic $\small{L}$-rhamnose isomerase from Caldicellulosiruptor saccharolyticus ATCC 43494. J. Agric. Food Chem. 59: 8702-8708. https://doi.org/10.1021/jf201428b
  8. Bai W, Shen J, Zhu YM, Men Y, Sun YX, Ma YH. 2015 . Characteristics and kinetic properties of $\small{L}$-rhamnose isomerase from Bacillus subtilis by isothermal titration calorimetry for the production of $\small{D}$-allose. Food Sci. Technol. Res. 21: 13-22. https://doi.org/10.3136/fstr.21.13
  9. Feng Z, Mu W, Jiang B. 2013. Characterization of ribose-5-phosphate isomerase converting $\small{D}$-psicose to $\small{D}$-allose from Thermotoga lettingae TMO. Biotechnol. Lett. 35: 719-724.
  10. Yeom SJ, Seo ES, Kim YS, Oh DK. 2011. Increased D-allose production by the R132E mutant of ribose-5-phosphate isomerase from Clostridium thermocellum. Appl. Microbiol. Biotechnol. 89: 1859-1866. https://doi.org/10.1007/s00253-010-3026-0
  11. Park CS, Yeom SJ, Kim HJ, Lee SH, Lee JK, Kim SW, et al. 2007. Characterization of ribose-5-phosphate isomerase of Clostridium thermocellum producing $\small{D}$-allose from $\small{D}$-psicose. Biotechnol. Lett. 29: 1387-1391. https://doi.org/10.1007/s10529-007-9393-7
  12. Hossain A, Yamaguchi F, Matsuo T, Tsukamoto I, Toyoda Y, Ogawa M, et al. 2015 . Rare sugar $\small{D}$-allulose: potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacol. Ther. 155: 49-59. https://doi.org/10.1016/j.pharmthera.2015.08.004
  13. Chung MY, Oh DK, Lee KW. 2012. Hypoglycemic health benefits of $\small{D}$-psicose. J. Agric. Food Chem. 60: 863-869.
  14. Takeshita K, Suga A, Takada G, Izumori K. 2000. Mass production of $\small{D}$-psicose from $\small{D}$-fructose by a continuous bioreactor system using immobilized $\small{D}$-tagatose 3-epimerase. J. Biosci. Bioeng. 90: 453-455. https://doi.org/10.1016/S1389-1723(01)80018-9
  15. Zhang LT, Mu WM, Jiang B, Zhang T. 2009. Characterization of $\small{D}$-tagatose-3-epimerase from Rhodobacter sphaeroides that converts $\small{D}$-fructose into $\small{D}$-psicose. Biotechnol Lett. 31: 857-862. https://doi.org/10.1007/s10529-009-9942-3
  16. Kim HJ, Hyun EK, Kim YS, Lee YJ, Oh DK. 2006. Characterization of an Agrobacterium tumefaciens $\small{D}$-psicose 3-epimerase that converts $\small{D}$-fructose to $\small{D}$-psicose. Appl. Environ. Microbiol. 72: 981-985. https://doi.org/10.1128/AEM.72.2.981-985.2006
  17. Lim BC, Kim HJ, Oh DK. 2009. A stable immobilized $\small{D}$-psicose 3-epimerase for the production of $\small{D}$-psicose in the presence of borate. Process Biochem. 44: 822-828.
  18. Zhu Y, Men Y, Bai W, Li X, Zhang L, Sun Y, et al. 2012. Overexpression of $\small{D}$-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in $\small{D}$-psicose production. Biotechnol. Lett. 34: 1901-1906. https://doi.org/10.1007/s10529-012-0986-4
  19. Mu W, Zhang W, Fang D, Zhou L, Jiang B, Zhang T. 2013. Characterization of a $\small{D}$-psicose-producing enzyme, $\small{D}$-psicose 3-epimerase, from Clostridium sp. Biotechnol. Lett. 35: 1481-1486. https://doi.org/10.1007/s10529-013-1230-6
  20. He W, Mu W, Jiang B, Yan X, Zhang T. 2016. Construction of a food grade recombinant Bacillus subtilis based on replicative plasmids with an auxotrophic marker for biotransformation of $\small{D}$-fructose to $\small{D}$-allulose. J. Agric. Food Chem. 64: 3243-3250. https://doi.org/10.1021/acs.jafc.6b00278
  21. Park CS, Kim T, Hong SH, Shin KC, Kim KR, Oh DK. 2016. $\small{D}$-Allulose production from $\small{D}$-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing $\small{D}$-allulose 3-epimerase Flavonifractor plautii. PLoS One 11: e0160044. https://doi.org/10.1371/journal.pone.0160044

피인용 문헌

  1. Characterization of Ribose-5-Phosphate Isomerase B from Newly Isolated Strain Ochrobactrum sp. CSL1 Producing ʟ-Rhamnulose from ʟ-Rhamnose vol.28, pp.7, 2018, https://doi.org/10.4014/jmb.1802.02021
  2. Core Gut Bacteria Analysis of Healthy Mice vol.10, pp.None, 2018, https://doi.org/10.3389/fmicb.2019.00887
  3. Exploring Multifunctional Residues of Ribose-5-phosphate Isomerase B from Ochrobactrum sp. CSL1 Enhancing Isomerization of D-Allose vol.68, pp.11, 2018, https://doi.org/10.1021/acs.jafc.9b07855
  4. Phosphate sugar isomerases and their potential for rare sugar bioconversion vol.58, pp.9, 2018, https://doi.org/10.1007/s12275-020-0226-x
  5. Engineering ribose-5-phosphate isomerase B from a central carbon metabolic enzyme to a promising sugar biocatalyst vol.105, pp.2, 2018, https://doi.org/10.1007/s00253-020-11075-z
  6. Enhanced isomerization of rare sugars by ribose-5-phosphate isomerase A from Ochrobactrum sp. CSL1 vol.148, pp.None, 2021, https://doi.org/10.1016/j.enzmictec.2021.109789
  7. Biotechnological production of non-volatile flavor compounds vol.41, pp.None, 2018, https://doi.org/10.1016/j.cofs.2021.02.003