DOI QR코드

DOI QR Code

Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Dabbagh, Ali (School of Mechanical Engineering, College of Engineering, University of Tehran)
  • Received : 2017.12.23
  • Accepted : 2018.01.10
  • Published : 2018.03.25

Abstract

Importance of procuring adequate knowledge about the mechanical behavior of double-layered graphene sheets (DLGSs) incensed the authors to investigate wave propagation responses of mentioned element while rested on a visco-Pasternak medium under hygro-thermal loading. A nonlocal strain gradient theory (NSGT) is exploited to present a more reliable size-dependent mechanical analysis by capturing both softening and hardening effects of small scale. Furthermore, in the framework of a classical plate theory the kinematic relations are developed. Incorporating kinematic relations with the definition of Hamilton's principle, the Euler-Lagrange equations of each of the layers are derived separately. Afterwards, combining Euler-Lagrange equations with those of the NSGT the nonlocal governing equations are written in terms of displacement fields. Interaction of the each of the graphene sheets with another one is regarded by the means of vdW model. Then, a widespread analytical solution is employed to solve the derived equations and obtain wave frequency values. Subsequently, influence of each participant variable containing nonlocal parameter, length scale parameter, foundation parameters, temperature gradient and moisture concentration is studied by plotting various figures.

Keywords

References

  1. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697.
  2. Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  3. Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743
  4. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
  5. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  6. Anjomshoa, A., Shahidi, A.R., Hassani, B. and Jomehzadeh, E. (2014), "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory", Appl. Math. Model., 38(24), 5934-5955. https://doi.org/10.1016/j.apm.2014.03.036
  7. Ansari, R., Arash, B. and Rouhi, H. (2011), "Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity", Compos. Struct., 93(9), 2419-2429. https://doi.org/10.1016/j.compstruct.2011.04.006
  8. Ansari, R., Rajabiehfard, R. and Arash, B. (2010), "Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets", Comput. Mater. Sci., 49(4), 831-838. https://doi.org/10.1016/j.commatsci.2010.06.032
  9. Arani, A.G. and Jalaei, M.H. (2016), "Nonlocal dynamic response of embedded single-layered graphene sheet via analytical approach", J. Eng. Math., 98(1), 129-144. https://doi.org/10.1007/s10665-015-9814-x
  10. Arani, A.G., Haghparast, E. and Zarei, H.B. (2016), "Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field", Phys. B: Condens. Matt., 495, 35-49. https://doi.org/10.1016/j.physb.2016.04.039
  11. Arani, A.G., Kolahchi, R., Barzoki, A.A.M., Mozdianfard, M.R. and Farahani, S.M.N. (2013), "Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic graphene sheets using differential quadrature method", J. Mech. Eng. Sci., 227(4), 862-879. https://doi.org/10.1177/0954406212453808
  12. Arash, B., Wang, Q. and Liew, K.M. (2012), "Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation", Comput. Meth. Appl. Mech. Eng., 223, 1-9.
  13. Attia, A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  14. Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Phys. E: Low-Dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
  15. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  16. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  17. Boukhari, A., Atmane, H.A., Tounsi, A., Adda, B. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  18. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  19. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  20. Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  21. Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  22. Ebrahimi, F. and Barati, M.R. (2016c), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
  23. Ebrahimi, F. and Barati, M.R. (2016d), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
  24. Ebrahimi, F. and Barati, M.R. (2016e), "Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory", Acta Mech. Sol. Sin., 29(5), 547-554. https://doi.org/10.1016/S0894-9166(16)30272-5
  25. Ebrahimi, F. and Barati, M.R. (2016f), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J. Plus, 131(9), 346. https://doi.org/10.1140/epjp/i2016-16346-5
  26. Ebrahimi, F. and Barati, M.R. (2017a), "Effect of three-parameter viscoelastic medium on vibration behavior of temperature-dependent non-homogeneous viscoelastic nanobeams in a hygro-thermal environment", Mech. Adv. Mater. Struct., 1-14.
  27. Ebrahimi, F. and Barati, M.R. (2017b), "Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects", Appl. Phys. A, 123(1), 5.
  28. Ebrahimi, F. and Barati, M.R. (2017c), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092
  29. Ebrahimi, F. and Barati, M.R. (2017d), "Buckling analysis of smart size-dependent higher order magneto-electro-thermoelastic functionally graded nanosize beams", J. Mech., 33(1), 23-33. https://doi.org/10.1017/jmech.2016.46
  30. Ebrahimi, F. and Barati, M.R. (2017e), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory", Mech. Adv. Mater. Struct., 1-10.
  31. Ebrahimi, F. and Barati, M.R. (2017f), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stress., 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076
  32. Ebrahimi, F. and Barati, M.R. (2017g), "Damping vibration analysis of smart piezoelectric polymeric nanoplates on viscoelastic substrate based on nonlocal strain gradient theory", Smart Mater. Struct., 26(6), 065018. https://doi.org/10.1088/1361-665X/aa6eec
  33. Ebrahimi, F. and Barati, M.R. (2018), "Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygrothermal effects employing nonlocal strain gradient theory", Compos. Struct., 185, 241-253. https://doi.org/10.1016/j.compstruct.2017.10.021
  34. Ebrahimi, F. and Dabbagh, A. (2017a), "Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams", Eur. Phys. J. Plus, 132, 1-15. https://doi.org/10.1140/epjp/i2017-11280-8
  35. Ebrahimi, F. and Dabbagh, A. (2017b), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058
  36. Ebrahimi, F. and Dabbagh, A. (2017c), "Nonlocal strain gradientbased wave dispersion behavior of smart rotating magnetoelectro-elastic nanoplates", Mater. Res. Expr., 4(2), 025003. https://doi.org/10.1088/2053-1591/aa55b5
  37. Ebrahimi, F. and Dabbagh, A. (2017d), "On wave dispersion characteristics of double-layered graphene sheets in thermal environments", J. Electromagnet. Wav. Appl., 1-20.
  38. Ebrahimi, F. and Habibi, S. (2017), "Nonlinear eccentric lowvelocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments", Mech. Adv. Mater. Struct., 1-14.
  39. Ebrahimi, F. and Habibi, S. (2017a), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., 5(2), 69-97. https://doi.org/10.12989/ANR.2017.5.2.069
  40. Ebrahimi, F. and Heidari, E. (2017), "Surface effects on nonlinear vibration of embedded functionally graded nanoplates via higher order shear deformation plate theory", Mech. Adv. Mater. Struct., 1-29.
  41. Ebrahimi, F. and Hosseini, S.H.S. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  42. Ebrahimi, F. and Jafari, A. (2016), "Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory", Adv. Mater. Res., 5(4), 279-298. https://doi.org/10.12989/amr.2016.5.4.279
  43. Ebrahimi, F. and Jafari, A. (2017), "Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory", Adv. Nano Res., 5(4), 281-301.
  44. Ebrahimi, F. and Jafari, A. (2018), "A four-variable refined shear-deformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities", Mech. Adv. Mater. Struct., 25(3), 212-224. https://doi.org/10.1080/15376494.2016.1255820
  45. Ebrahimi, F. and Salari, E. (2015a), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  46. Ebrahimi, F. and Salari, E. (2015b), "Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory", J. Mech. Sci. Technol., 29(9), 3797-3803. https://doi.org/10.1007/s12206-015-0826-2
  47. Ebrahimi, F. and Salari, E. (2017), "Semi-analytical vibration analysis of functionally graded size-dependent nanobeams with various boundary conditions", Smart Struct. Syst., 19(3), 243-257. https://doi.org/10.12989/sss.2017.19.3.243
  48. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772.
  49. Ebrahimi, F. and Shaghaghi, G.R. (2016), "Thermal effects on nonlocal vibrational characteristics of nanobeams with nonideal boundary conditions", Smart Struct. Syst., 18(6), 1087-1109. https://doi.org/10.12989/sss.2016.18.6.1087
  50. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams", Appl. Phys. A, 122(11), 949. https://doi.org/10.1007/s00339-016-0465-1
  51. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016b), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  52. Ebrahimi, F., Barati, M.R. and Haghi, P. (2016c), "Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams", Eur. Phys. J. Plus, 131(11), 383. https://doi.org/10.1140/epjp/i2016-16383-0
  53. Ebrahimi, F., Barati, M.R. and Haghi, P. (2016d), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stress., 1-13.
  54. Ebrahimi, F., Dabbagh, A. and Barati, M.R. (2016e), "Wave propagation analysis of a size-dependent magneto-electroelastic heterogeneous nanoplate", Eur. Phys. J. Plus, 131(12), 433. https://doi.org/10.1140/epjp/i2016-16433-7
  55. Ebrahimi, F., Ghasemi, F. and Salari, E. (2016f), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccan., 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y
  56. Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016g), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200. https://doi.org/10.12989/sem.2016.57.1.179
  57. Ebrahimy, F. and Hosseini, S.H.S. (2016), "Nonlinear electroelastic vibration analysis of NEMS consisting of doubleviscoelastic nanoplates", Appl. Phys. A, 122(10), 922. https://doi.org/10.1007/s00339-016-0452-6
  58. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
  59. Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", J. Eng. Sci., 10(5), 425-435.
  60. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  61. Farajpour, A., Solghar, A.A. and Shahidi, A. (2013), "Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression", Phys. E: Low-Dimens. Syst. Nanostruct., 47, 197-206. https://doi.org/10.1016/j.physe.2012.10.028
  62. Farajpour, A., Yazdi, M.H., Rastgoo, A. and Mohammadi, M. (2016), "A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment", Acta Mech., 227(7), 1849-1867. https://doi.org/10.1007/s00707-016-1605-6
  63. Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Sol., 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
  64. Ghadiri, M. and Shafiei, N. (2016), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9
  65. Hashemi, S.H., Mehrabani, H. and Ahmadi-Savadkoohi, A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium", Compos. Part B: Eng., 78, 377-383. https://doi.org/10.1016/j.compositesb.2015.04.008
  66. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  67. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/SCS.2017.25.3.361
  68. Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
  69. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Sol., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  70. Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Sci., 321(5887), 385-388. https://doi.org/10.1126/science.1157996
  71. Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013
  72. Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025
  73. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014
  74. Liew, K.M., He, X.Q. and Kitipornchai, S. (2006), "Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix", Acta Mater., 54(16), 4229-4236. https://doi.org/10.1016/j.actamat.2006.05.016
  75. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Sol., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  76. Liu, H. and Yang, J.L. (2012), "Elastic wave propagation in a single-layered graphene sheet on two-parameter elastic foundation via nonlocal elasticity", Phys. E: Low-Dimens. Syst. Nanostruct., 44(7), 1236-1240. https://doi.org/10.1016/j.physe.2012.01.018
  77. Malekzadeh, P., Setoodeh, A.R. and Beni, A.A. (2011), "Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates", Compos. Struct., 93(7), 1631-1639. https://doi.org/10.1016/j.compstruct.2011.01.008
  78. Murmu, T. and Pradhan, S.C. (2009), "Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory", J. Appl. Phys., 105(6), 064319. https://doi.org/10.1063/1.3091292
  79. Murmu, T., McCarthy, M.A. and Adhikari, S. (2013), "In-plane magnetic field affected transverse vibration of embedded singlelayer graphene sheets using equivalent nonlocal elasticity approach", Compos. Struct., 96, 57-63. https://doi.org/10.1016/j.compstruct.2012.09.005
  80. Narendar, S. and Gopalakrishnan, S. (2012a), "Temperature effects on wave propagation in nanoplates", Compos. Part B: Eng., 43(3), 1275-1281. https://doi.org/10.1016/j.compositesb.2011.11.029
  81. Narendar, S. and Gopalakrishnan, S. (2012b), "Study of terahertz wave propagation properties in nanoplates with surface and small-scale effects", J. Mech. Sci., 64(1), 221-231. https://doi.org/10.1016/j.ijmecsci.2012.06.012
  82. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031
  83. Natsuki, T., Shi, J.X. and Ni, Q.Q. (2012), "Buckling instability of circular double-layered graphene sheets", J. Phys.: Condens. Matt., 24(13), 135004. https://doi.org/10.1088/0953-8984/24/13/135004
  84. Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
  85. Pradhan, S.C. and Kumar, A. (2011), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Struct., 93(2), 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004
  86. Pradhan, S.C. and Murmu, T. (2010), "Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory", Phys. E: Low-Dimens. Syst. Nanostruct., 42(5), 1293-1301. https://doi.org/10.1016/j.physe.2009.10.053
  87. Pradhan, S.C. and Phadikar, J.K. (2009), "Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models", Phys. Lett. A, 373(11), 1062-1069. https://doi.org/10.1016/j.physleta.2009.01.030
  88. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
  89. Rouhi, S. and Ansari, R. (2012), "Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets", Phys. E: Low-Dimens. Syst. Nanostruct., 44(4), 764-772. https://doi.org/10.1016/j.physe.2011.11.020
  90. Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T. and Mingo, N. (2010), "Two-dimensional phonon transport in supported graphene", Sci., 328(5975), 213-216. https://doi.org/10.1126/science.1184014
  91. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755
  92. Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  93. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
  94. Wang, Q. and Varadan, V. K. (2007), "Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes", Smart Mater. Struct., 16(1), 178. https://doi.org/10.1088/0964-1726/16/1/022
  95. Wang, Y.Z., Li, F.M. and Kishimoto, K. (2010), "Scale effects on the longitudinal wave propagation in nanoplates", Phys. E: Low-Dimens. Syst. Nanostruct., 42(5), 1356-1360. https://doi.org/10.1016/j.physe.2009.11.036
  96. Wang, Y., Li, F.M. and Wang, Y.Z. (2015), "Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory", Phys. E: Low-Dimens. Syst. Nanostruct., 67, 65-76. https://doi.org/10.1016/j.physe.2014.11.007
  97. Xiao, W., Li, L. and Wang, M. (2017), "Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory", Appl. Phys. A, 123(6), 388.
  98. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  99. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  100. Zenkour, A.M. (2016), "Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium", Phys. E: Low-Dimens. Syst. Nanostruct., 79, 87-97. https://doi.org/10.1016/j.physe.2015.12.003
  101. Zhu, X. and Li, L. (2017a), "On longitudinal dynamics of nanorods", J. Eng. Sci., 120, 129-145. https://doi.org/10.1016/j.ijengsci.2017.08.003