DOI QR코드

DOI QR Code

Hydraulic conductivity estimation by considering the existence of piles: A case study

  • Yuan, Yao (State Key Laboratory of Ocean Engineering and Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE), Department of Civil Engineering, Shanghai Jiao Tong University) ;
  • Xu, Ye-Shuang (State Key Laboratory of Ocean Engineering and Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE), Department of Civil Engineering, Shanghai Jiao Tong University) ;
  • Shen, Jack S. (State Key Laboratory of Ocean Engineering and Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE), Department of Civil Engineering, Shanghai Jiao Tong University) ;
  • Wang, Bruce Zhi-Feng (Department of Geotechnical and Tunnelling Engineering, School of Highway, Chang'an University)
  • Received : 2016.04.13
  • Accepted : 2017.09.20
  • Published : 2018.04.10

Abstract

Estimation of hydraulic parameters is a critical step during design of foundation dewatering works. When many piles are installed in an aquifer, estimation of the hydraulic conductivity should consider the blocking of groundwater seepage by the piles. Based on field observations during a dewatering project in Shanghai, hydraulic conductivities are back-calculated using a numerical model considering the actual position of each pile. However, it is difficult to apply the aforementioned model directly in field due to requirement to input each pile geometry into the model. To develop a simple numerical model and find the optimal hydraulic conductivity, three scenarios are examined, in which the soil mass containing the piles is considered to be a uniform porous media. In these three scenarios, different sub-regions with different hydraulic conductivities, based on either automatic inverted calculation, or on effective medium theory (EMT), are established. The results indicate that the error, in the case which determines the hydraulic conductivity based on EMT, is less than that determined in the automatic inversion case. With the application of EMT, only the hydraulic conductivity of the soil outside the pit should be inverted. The soil inside the pit with its piles is divided into sub-regions with different hydraulic conductivities, and the hydraulic conductivity is calculated according to the volume ratio of the piles. Thus, the use of EMT in numerical modelling makes it easier to consider the effect of piles installed in an aquifer.

Keywords

Acknowledgement

Supported by : National Nature Science Foundation of China (NSFC), Ministry of Land and Resources in China

References

  1. Anderson, E.I. and Mesa, E. (2006), "The effects of vertical barrier walls on the hydraulic control of contaminated groundwater", Adv. Water Resour., 29(1), 89-98. https://doi.org/10.1016/j.advwatres.2005.05.005
  2. Bunn, M.I., Jones, J.P., Endres, A.L. and Rudolph, D.L. (2010), "Effects of hydraulic conductivity heterogeneity on vadose zone response to pumping in an unconfined aquifer", J. Hydrol., 387(1-2), 90-104. https://doi.org/10.1016/j.jhydrol.2010.03.036
  3. Cai, G., Zhou, A. and Sheng, D. (2014), "Permeability function for unsaturated soils with different initial densities", Can. Geotech. J., 51(12), 1456-1467. https://doi.org/10.1139/cgj-2013-0410
  4. Carlson, M.A., Lohse, K.A., Jennifer, C., McIntosh, J.C. and McLain, J.E. (2011), "Impacts of urbanization on groundwater quality and recharge in a semi-arid alluvial basin", J. Hydrol., 409(1-2), 196-211. https://doi.org/10.1016/j.jhydrol.2011.08.020
  5. Cheng, C. and Chen, X. (2007), "Evaluation of methods for determination of hydraulic properties in an aquifer-aquitard system hydrologically connected to a river", Hydrogeol. J., 15(4), 669-678. https://doi.org/10.1007/s10040-006-0135-z
  6. Dagan, G. (1979), "Models of groundwater flow in statistically homogeneous porous formations", Water Resour. Res., 15(1), 47-63. https://doi.org/10.1029/WR015i001p00047
  7. Desbarats, A.J. (1987), "Numerical estimation of effective permeability in sand-shale formation", Water Resour. Res., 23(2), 273-286. https://doi.org/10.1029/WR023i002p00273
  8. Ding, G.P., Jiao, J.J. and Zhang, D.X. (2008), "Modelling study on the impact of deep building foundations on the groundwater system", Hydrol. Process., 22(12), 1857-1865. https://doi.org/10.1002/hyp.6768
  9. Du, Y.J., Fan, R.D., Liu, S.Y., Reddy, K.R. and Jin, F. (2015a), "Workability, compressibility and hydraulic conductivity of zeolite-amended clayey soil/calcium-bentonite backfills for slurry-trench cutoff walls", Eng. Geol., 195, 258-268. https://doi.org/10.1016/j.enggeo.2015.06.020
  10. Du, Y.J., Fan, R.D., Reddy, K.R., Liu, S.Y. and Yang, Y.L. (2015b), "Impacts of presence of lead contamination in clayey soil-calcium bentonite cutoff wall backfills", Appl. Clay Sci., 108, 111-122. https://doi.org/10.1016/j.clay.2015.02.006
  11. Du, Y.J., Jiang, N.J., Liu, S.Y., Jin, F., Singh, D.N. and Puppala, A.J. (2014a), "Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin", Can. Geotech. J., 51(3), 289-302. https://doi.org/10.1139/cgj-2013-0177
  12. Du, Y.J., Wei, M.L., Reddy, K.R., Liu, Z.P. and Jin, F. (2014b). "Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil", J. Hazard. Mater., 271, 131-140. https://doi.org/10.1016/j.jhazmat.2014.02.002
  13. Fan, R.D., Du, Y.J., Reddy, K.R., Liu, S.Y. and Yang, Y.L. (2014), "Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: Initial assessment", Appl. Clay Sci., 101, 119-127. https://doi.org/10.1016/j.clay.2014.07.026
  14. Forth, R.A. (2004), "Groundwater and geotechnical aspects of deep excavations in Hong Kong", Eng. Geol., 72(3), 253-260. https://doi.org/10.1016/j.enggeo.2003.09.003
  15. Frippiat, C.C. and Holeyman, A.E. (2008), "A comparative review of upscaling methods for solute transport in heterogeneous porous media", J. Hydrol., 362(1-2), 150-176. https://doi.org/10.1016/j.jhydrol.2008.08.015
  16. Han, L., Ye, G.L., Chen, J.J., Xia, X.H. and Wang, J.H. (2017), "Pressures on the lining of a large shield tunnel with a small overburden: A case study", Tunn. Undergr. Sp. Tech., 64, 1-9. https://doi.org/10.1016/j.tust.2017.01.008
  17. Han, L., Ye, G.L., Li, Y.H., Xia, X.H. and Wang, J.H. (2016), "In-situ monitoring of frost heave pressure during cross passage construction using ground freezing method", Can. Geotech. J., 53(3), 530-539. https://doi.org/10.1139/cgj-2014-0486
  18. Hinchberger, S., Weck, J. and Newson, T. (2010), "Mechanical and hydraulic characterization of plastic concrete for seepage cut-off walls", Can. Geotech. J., 47(4), 461-471. https://doi.org/10.1139/T09-103
  19. Hugman, R., Stigter, T.Y., Monteiro, J.P., Costa, L. and Nunes, L.M. (2015), "Modeling the spatial and temporal distribution of coastal groundwater discharge for different water use scenarios under epistemic uncertainty: Case study in South Portugal", Environ. Earth Sci., 73(6), 2657-2669. https://doi.org/10.1007/s12665-014-3709-4
  20. Jiao, J.J., Leung, C.M. and Ding, G.P. (2008), "Changes to the groundwater system, from 1888 to present, in a highly-urbanized coastal area in Hong Kong, China", Hydrogeol. J., 16(8), 1527-1539. https://doi.org/10.1007/s10040-008-0332-z
  21. Jiao, J.J., Wang, X.S. and Nandy, S. (2006), "Preliminary assessment of the impacts of deep foundations and land reclamation on groundwater flow in a coastal area in Hong Kong, China", Hydrogeol. J., 14(1-2), 100-114. https://doi.org/10.1007/s10040-004-0393-6
  22. Jin, Y.F., Yin, Z.Y., Shen, S.L. and Hicher, P.Y. (2016a), "Selection of sand models and identification of parameters using an enhanced genetic algorithm", J. Numer. Anal. Met. Geomech., 40(8), 1219-1240. https://doi.org/10.1002/nag.2487
  23. Jin, Y.F., Yin, Z.Y., Shen, S.L. and Hicher, P.Y. (2016b), "Investigation into MOGA for identifying parameters of a critical state based sand model and parameters correlation by factor analysis", Acta Geotech., 11(5), 1131-1145. https://doi.org/10.1007/s11440-015-0425-5
  24. Johnson, G.S., Frederick, D.B. and Cosgrove, D.M. (2002), "Evaluation of a pumping test of the Snake River Plain aquifer using axial-flow numerical modeling", Hydrogeol. J., 10(3), 428-437. https://doi.org/10.1007/s10040-002-0201-0
  25. Li, S.J., Liu, Y.X. and Wang, D.G. (2002), "Inversion and project application of rock permeability coefficient based on neural network", Chin. J. Rock Mech. Eng., 21(4), 479-483 (in Chinese).
  26. Lin, H.T., Tan, Y.C., Chen, C.H., Yu, H.L., Wu, S.C. and Ke, K.Y. (2010), "Estimation of effective hydrogeological parameters in heterogeneous and anisotropic aquifers", J. Hydrol., 389(1-2), 57-68. https://doi.org/10.1016/j.jhydrol.2010.05.021
  27. Liu, J. and Wang, Y. (2003), "Improved genetic algorithm in back analysis for seepage parameters of fissured rock masses", Rock Soil Mech., 24(2), 237-241 (in Chinese).
  28. Ma, L., Xu, Y.S., Shen, S.L. and Sun, W.J. (2014), "Evaluation of the hydraulic conductivity of aquifers with piles", Hydrogeol. J., 22(2), 371-382. https://doi.org/10.1007/s10040-013-1068-y
  29. Mulligan, C.N., Yong, R.N. and Gibbs, B.F. (2001), "Remediation technologies for metal-contaminated soils and groundwater: An evaluation", Eng. Geol., 60(1), 193-207. https://doi.org/10.1016/S0013-7952(00)00101-0
  30. Ni, J.C., Cheng, W.C. and Ge, L. (2011), "A case history of field pumping tests in a deep gravel formation in the Taipei Basin, Taiwan", Eng. Geol., 117(1-2), 17-28. https://doi.org/10.1016/j.enggeo.2010.10.001
  31. Ni, J.C., Cheng, W.C. and Ge, L. (2013), "A simple data reduction method for pumping tests with tidal, partial penetration, and storage effects", Soil. Found., 53(6), 894-902. https://doi.org/10.1016/j.sandf.2013.10.008
  32. Pujades, E., Carrera, J., Vazquez-Sune, E., Jurado, A., Vilarrasa, V. and Mascunano-Salvador, E. (2012b), "Hydraulic characterization of diaphragm walls for cut and cover tunnelling", Eng. Geol., 125, 1-10. https://doi.org/10.1016/j.enggeo.2011.10.012
  33. Pujades, E., Lopez, A., Carrera, J., Vazquez-Sune, E. and Jurado, A. (2012a), "Barrier effect of underground structures on aquifers", Eng. Geol., 145, 41-49.
  34. Pujades, E., Vazquez-Sune, E., Carrera, J. and Jurado, A. (2014), "Dewatering of a deep excavation undertaken in a layered soil", Eng. Geol., 178, 15-27. https://doi.org/10.1016/j.enggeo.2014.06.007
  35. Ranjan, S., Mysore, S.N., Kenneth, L.M. and Gordon, P.B. (2008), "Investigations of pile foundations in brownfields", J. Geotech. Geoenviron. Eng., 134(10), 562-572.
  36. Renard, P. and Marsily, G.D. (1997), "Calculating equivalent permeability: A review", Adv. Water Resour., 20(5-6), 253-278. https://doi.org/10.1016/S0309-1708(96)00050-4
  37. Richardson, J.P. and Nicklow, J.W. (2002), "In situ permeable reactive barriers for groundwater contamination", Soil Sediment Contam., 11(2), 241-268. https://doi.org/10.1080/20025891106736
  38. Schoniger, A., A.Illman, W., Wohling, T. and Nowak, W. (2015), "Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection", J. Hydrol., 531(1), 96-110. https://doi.org/10.1016/j.jhydrol.2015.07.047
  39. Shanghai Urban Construction and Communications Commission (SUCCC) (2010), Foundation Design Code (DGJ08-11-2010).
  40. Shen, S.L. and Xu, Y.S. (2011), "Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai", Can. Geotech. J., 48(9), 1378-1392. https://doi.org/10.1139/t11-049
  41. Shen, S.L., Wang, J.P., Wu, H.N., Xu, Y.S. and Ye, G.L. (2015b), "Evaluation of hydraulic conductivity for both marine and deltaic deposits based on piezocone testing", Ocean Eng., 110, 174-182. https://doi.org/10.1016/j.oceaneng.2015.10.011
  42. Shen, S.L., Wang, Z.F., Yang, J. and Ho, E.C. (2013), "Generalized approach for prediction of jet grout column diameter", J. Geotech. Geoenviron., 139(12), 2060-2069. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000932
  43. Shen, S.L., Wu, H.N., Cui, Y.J. and Yin, Z.Y. (2014), "Long-term settlement behavior of metro tunnels in the soft deposits of Shanghai", Tunn. Undergr. Sp. Tech., 40, 309-323. https://doi.org/10.1016/j.tust.2013.10.013
  44. Shen, S.L., Wu, Y.X., Xu, Y.S., Hino, T. and Wu, H.N. (2015a), "Evaluation of hydraulic parameters from pumping tests in multi-aquifers with vertical leakage in Tianjin", Comput. Geotech., 68, 196-207. https://doi.org/10.1016/j.compgeo.2015.03.011
  45. Tan, Y. and Lu, Y. (2016a), "Why excavation of a small air shaft caused excessively large displacements: Forensic investigation", J. Perform. Constr. Fac., 31(2), 04016083.
  46. Tan, Y. and Wang, D.L. (2013a), "Characteristics of a large-scale deep foundation pit excavated by central-island technique in Shanghai soft clay. I: Bottom-up construction of the central cylindrical shaft", J. Geotech. Geoenviron., 139(11), 1875-1893.
  47. Tan, Y. and Wang, D.L. (2013b), "Characteristics of a large-scale deep foundation pit excavated by central-island technique in Shanghai soft clay. II: top-down construction of the peripheral rectangular pit", J. Geotech. Geoenviron., 139(11), 1894-1910. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000929
  48. Tan, Y., Huang, R., Kang, Z. and Bin, W. (2016b), "Covered semi-top-down excavation of subway station surrounded by closely spaced buildings in downtown Shanghai: Building response", J. Perform. Constr. Fac., 30(6), 04016040. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000892
  49. Vilarrasa, V., Carrera, J., Jurado, A., Pujades, E. and Vazquez-Sune, E. (2011), "A methodology for characterizing the hydraulic effectiveness of an annular low-permeability barrier", Eng. Geol., 120(1-4), 68-80. https://doi.org/10.1016/j.enggeo.2011.04.005
  50. Wang, J.X., Feng, B., Liu, Y., Wu, L.G., Zhu, Y.F., Zhang, X.S., Tang, Y.Q. and Yang, P. (2012), "Controlling subsidence caused by de-watering in a deep foundation pit", Bull. Eng. Geol. Environ., 71(3), 545-555. https://doi.org/10.1007/s10064-012-0420-0
  51. Wang, J.X., Feng, B., Yu, H., Guo, T., Yang, G. and Tang, J. (2013), "Numerical study of dewatering in a large deep foundation pit", Environ. Earth Sci., 69(3), 863-872 https://doi.org/10.1007/s12665-012-1972-9
  52. Wu, C.J., Ye, G.L., Zhang, L.L., Bishop, D. and Wang, J.H. (2014), "Depositional environment and geotechnical properties of Shanghai clay: A comparison with Ariake and Bangkok clays", Bull. Eng. Geol. Environ., 74(3), 717-732.
  53. Wu, H.N., Shen, S.L., Liao, S.M. and Yin, Z.Y. (2015b), "Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings", Tunn. Undergr. Sp. Tech., 50, 317-323. https://doi.org/10.1016/j.tust.2015.08.001
  54. Wu, H.N., Shen, S.L., Ma, L., Yin, Z.Y. and Horpibulsuk, S. (2015a), "Evaluation of the strength increase of marine clay under staged embankment loading: A case study", Mar. Georesour. Geotechnol., 33(6), 532-541. https://doi.org/10.1080/1064119X.2014.954180
  55. Wu, S.C., Tan, Y.C., Chen, C.H. and Lin, H.T. (2013), "Estimation of effective hydrogeological parameters by considering varying heterogeneity and pumping rates", Environ. Earth Sci., 68(1), 169-180. https://doi.org/10.1007/s12665-012-1727-7
  56. Wu, Y.X., Shen, S.L. and Yuan, D.J. (2016), "Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer", J. Hydrol., 539, 554-566. https://doi.org/10.1016/j.jhydrol.2016.05.065
  57. Wu, Y.X., Shen, S.L., Wu, H.N., Xu, Y.S., Yin, Z.Y. and Sun, W.J. (2015c), "Environmental protection using dewatering technology in a deep confined aquifer beneath a shallow aquifer", Eng. Geol., 196, 59-70. https://doi.org/10.1016/j.enggeo.2015.06.015
  58. Wu, Y.X., Shen, S.L., Xu, Y.S. and Yin, Z.Y. (2015d), "Characteristics of groundwater seepage with cut-off wall in gravel aquifer. I: Field observations", Can. Geotech. J., 52(10), 1526-1538. https://doi.org/10.1139/cgj-2014-0285
  59. Wu, Y.X., Shen, S.L., Yin, Z.Y. and Xu, Y.S. (2015e), "Characteristics of groundwater seepage with cut-off wall in gravel aquifer. II: Numerical analysis", Can. Geotech. J., 52(10), 1539-1549.
  60. Xu Y.S., Shen, S.L., Du, Y.J., Chai, J.C. and Horpibulsuk, S. (2013), "Modelling the cutoff behavior of underground structure in multi-aquifer-aquitard groundwater system", Nat. Hazards, 66(2), 731-748. https://doi.org/10.1007/s11069-012-0512-y
  61. Xu, Y.S., Ma, L., Shen, S.L. and Sun, W.J. (2012), "Evaluation of land subsidence by considering underground structures penetrated into aquifers of Shanghai", Hydrogeol. J., 20(8), 1623-1634. https://doi.org/10.1007/s10040-012-0892-9
  62. Xu, Y.S., Shen, S.L. and Du, Y.J. (2009), "Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures", Eng. Geol., 109(3-4), 241-254. https://doi.org/10.1016/j.enggeo.2009.08.009
  63. Xu, Y.S., Shen, S.L., Ma, L., Sun, W.J. and Yin, Z.Y. (2014), "Evaluation of the blocking effect of retaining walls on groundwater seepage in aquifers with different insertion depths", Eng. Geol., 183, 254-264. https://doi.org/10.1016/j.enggeo.2014.08.023
  64. Xu, Y.S., Shen, S.L., Ren, D.J. and Wu, H.N. (2016), "Analysis of factors in land subsidence in Shanghai: A view based on a strategic environmental assessment", Sustain., 8(6), 573. https://doi.org/10.3390/su8060573
  65. Ye, G.L. and Ye, B. (2016), "Investigation of the overconsolidation and structural behavior of Shanghai clays by element testing and constitutive modeling", Undergr. Sp., 1(1), 62-77.
  66. Ye, G.L., Hashimoto, T., Shen S.L., Zhu H.H. and Bai T.H. (2015), "Lessons learnt from unusual ground settlement during Double-O-Tube tunnelling in soft ground", Tunn. Undergr. Sp. Tech., 49, 79-91. https://doi.org/10.1016/j.tust.2015.04.008
  67. Yin Z.Y., Zhu, Q.Y., Yin, J.H. and Ni, Q. (2014), "Stress relaxation coefficient and formulation for soft soils", Geotech. Lett., 4(1), 45-51. https://doi.org/10.1680/geolett.13.00070
  68. Yin, Z.Y., Hicher, P.Y., Dano, C. and Jin Y.F. (2016), "Modeling the mechanical behavior of very coarse granular materials", J. Eng. Mech., 143(1), C4016006.
  69. Yin, Z.Y., Yin, J.H. and Huang, H.W. (2015), "Rate-dependent and long-term yield stress and strength of soft Wenzhou marine clay: experiments and modeling", Mar. Georesour. Geotech., 33(1), 79-91. https://doi.org/10.1080/1064119X.2013.797060
  70. Yoon, S., Lee, S.R., Kim, Y.T. and Go, G.H. (2015), "Estimation of saturated hydraulic conductivity of Korean weathered granite soils using a regression analysis", Geomech. Eng., 9(1), 101-113. https://doi.org/10.12989/gae.2015.9.1.101
  71. Zhang, D.M., Huang, Z.K., Yin, Z.Y., Ran, L. and Huang, H.W. (2017), "Predicting the grouting effect on leakage-induced tunnels and ground response in saturated soils", Tunn. Undergr. Sp. Tech., 65, 76-90. https://doi.org/10.1016/j.tust.2017.02.005
  72. Zhang, N., Shen, S.L., Wu, H.N., Chai, J.C. and Yin, Z.Y. (2015), "Evaluation of effect of basal geotextile reinforcement under embankment loading on soft marine deposits", Geotext. Geomembr., 43(6), 506-514. https://doi.org/10.1016/j.geotexmem.2015.05.005
  73. Zhou, A.N., Sheng, D. and Carter, J.P. (2012), "Modelling the effect of initial density on soil-water characteristic curves", Geotechnique, 62(8), 669-680. https://doi.org/10.1680/geot.10.P.120
  74. Zhou, N., Vermeer, P.A., Lou, R., Tang, Y. and Jiang, S. (2010), "Numerical simulation of deep foundation pit dewatering and optimization of controlling land subsidence", Eng. Geol., 114(3), 251-260. https://doi.org/10.1016/j.enggeo.2010.05.002
  75. Zhou, X. (2016), "Estimation of the position of the sharp interface in littoral aquifers with hydraulic head differences within the fresh-water zone", Environ. Earth Sci., 75(2), 110. https://doi.org/10.1007/s12665-015-4900-y
  76. Zhu, Q.Y., Yin, Z.Y., Hicher, P.Y. and Shen, S.L. (2016), "Nonlinearity of one-dimensional creep characteristics of soft clays", Acta Geotech., 11(4), 887-900. https://doi.org/10.1007/s11440-015-0411-y