Abstract
The hexagonal tungsten bronze $Cs_xWO_3$ nanoparticle was synthesized by a chemical coprecipitation method of ammonium tungstate and $Cs_2CO_3$ in acidic condition. This synthetic method for cesium tungsten bronze is reported for the first time as far as we know. The synthesized $Cs_xWO_3$ as precipitated showed a weak crystallinity of hexagonal unit cell with a crystallite size of about 4 nm without annealing. When the synthesized $Cs_xWO_3$ was annealed in $N_2$ atmosphere, the crystallinity and crystallite size systematically increased maintaining the typical hexagonal tungsten bronze structure as the annealing temperature increased. The analyzed Cs content in the bronze was about 0.3 vs W, which is very close to the theoretical maximum value, 1/3 in cesium tungsten bronze. According to XPS analysis, the reduced tungsten ions existed as both the forms of $W^{5+}$ and $W^{4+}$ and the contents systematically increased as the annealing temperature increased up to $800^{\circ}C$. The $Cs_xWO_3$ thin films on PET substrate were also prepared by a wet-coating method using the ball-milled solution of the annealed $Cs_xWO_3$ nanoparticles at various temperatures. The near-infrared shielding property of these thin films increased systematically as the annealing temperature increased up to $800^{\circ}C$ as expected with the increased contents of reduced tungsten ions.