DOI QR코드

DOI QR Code

A Study on Emission Properties of Green House Gas on Duration Combustion of Constructive Wood Materials

건축용 목재의 연소시 지구온난화 가스의 배출특성에 관한 연구

  • An, Hyung-Hwan (Dept. of Safety Engineering, Korea National University of Transportation)
  • 안형환 (한국교통대학교 산업경영안전공학부 안전공학전공)
  • Received : 2018.11.01
  • Accepted : 2018.12.19
  • Published : 2018.12.31

Abstract

MDF was treated on the surface of MDF with fire retardant lacquer, water-soluble flame retardant coat and water-soluble wood cover on the MDF wood, and the pyrolysis characteristics and the atmospheric noxious gas generation characteristics were investigated by using the large capacity thermal analyzer. As a result of investigating pyrolysis and combustion gas generation characteristics after treatment of 0.11 / 11.55 g in terms of mass ratio, it was found that combustion starting time was slightly longer than that of pure MDF in the case of treatment with fire retardant lacquer. The combustion temperature was increased from $340^{\circ}C$ to $450^{\circ}C$. The pyrolysis and combustion gas generation characteristics of the MDF wood treated with the aqueous flame retardant coat showed the changes in combustion starting time and temperature from $260^{\circ}C$ to $542^{\circ}C$ for about 26 minutes at the mass ratio of 0.13 / 11g. Also, when the commercially available waterproof wood cover was treated with 0.13 / 11.55 g of MDF, the sudden weight change tended to increase from $300^{\circ}C$ to $370^{\circ}C$ and showed a second change at approximately $500^{\circ}C$.

MDF목재에 처리제 즉, 방화락카, 수용성방염코트, 수용성우드커버 등을 MDF표면에 처리하여 연소시 열분해특성과 대기 유해가스 발생 특성을 대용량열분석기를 활용하여 실험한 결과 순수 MDF목재에 방화락카를 질량비로 0.11/11.55g을 처리한 후 열분해 및 연소가스 발생 특성을 살펴본 결과 방화락카를 처리한 경우 순수 MDF보다 연소시작시간이 다소 길어지고 연소온도가 약$340^{\circ}C$에서 $450^{\circ}C$로 올라가는 현상을 알 수 있었다. 그리고 수성방염코트를 처리한 MDF목재(PA2)의 열분해 및 연소가스발생 특성은 시료의 질량 비 0.13/11g에서 연소시작 시간과 온도가 약 26분 $260^{\circ}C$에서 약54분 $612^{\circ}C$로 변화를 보였다. 또한 상업적으로 판매되고 있는 수용성우드커버를 MDF에 0.13/11.55g을 처리하여 연소하였을 경우 급격한 중량변화는 $300^{\circ}C$에서 $370^{\circ}C$로 높아지는 경향을 보였고 약$500^{\circ}C$에서 2차 변화가 나타났다.

Keywords

GSGSBE_2018_v22n6_123_f0001.png 이미지

Fig. 1. Combustion furnace for thermal pyrolysis of wood.

GSGSBE_2018_v22n6_123_f0002.png 이미지

Fig. 2. Controller and weighing scales of the combustion furnace.

GSGSBE_2018_v22n6_123_f0003.png 이미지

Fig. 3. The thermal pyrolysis properties on a various temperature and combustion time of MDF.

GSGSBE_2018_v22n6_123_f0004.png 이미지

Fig. 4. Emission of noxious gas concentration on combustion time of MDF.

GSGSBE_2018_v22n6_123_f0005.png 이미지

Fig. 5. The thermal pyrolysis properties on a various temperature and combustion time of fire prevention laccaic paint(PA 1).

GSGSBE_2018_v22n6_123_f0006.png 이미지

Fig. 6. Greenhouse gas generation concentration on a combustion time of fire prevention laccaic paint(PA 1).

GSGSBE_2018_v22n6_123_f0007.png 이미지

Fig. 7. The thermal pyrolysis properties of temperature and weight change on a combustion time of water soluble flame resistant(PA 2).

GSGSBE_2018_v22n6_123_f0008.png 이미지

Fig. 8. Greenhouse gas generation concentration on a combustion time of water soluble flame resistant(PA2).

GSGSBE_2018_v22n6_123_f0009.png 이미지

Fig. 9. The thermal pyrolysis properties of temperature and weight change on a combustion time of water soluble wood flame resistant(PA3)

GSGSBE_2018_v22n6_123_f0010.png 이미지

Fig. 10. Greenhouse gas generation concentration on a combustion time of water solubility wood flame resistant(PA 3).

Table 1. Specification of large scale –thermogravimetric analyzer

GSGSBE_2018_v22n6_123_t0001.png 이미지

Table 2. Specification of combustion gas analyzer

GSGSBE_2018_v22n6_123_t0002.png 이미지

References

  1. Reid, R. C., Prausnitz, J. M. ,and Sherwood, T. K., The Properties of Gases and Liquids, 3rd ed., McGraw-Hill, New York, (1997)
  2. Dong Ki Lee, King Hong Kim, and Young Min Jo, Emission of HAPs from Open Burning of Solid Wastes, KIC News, Volume 19, No. 1, 19-27, (2016)
  3. Fabienne Reisen, Mahendra Bhujel, Justin Leonard, Particle and volatile organic emissions from the combustion of a range of building and furnishing materials using a cone calorimeter, Fire Safety Journal Volume 69, October, 76-88, (2014) https://doi.org/10.1016/j.firesaf.2014.08.008
  4. Ana Isabel Moreno, Rafael Font, Juan A. Conesa, "Combustion of furniture wood waste and solid wood: Kinetic study and evolution of pollutants", Fuel 192, 169-177(2017) https://doi.org/10.1016/j.fuel.2016.12.022
  5. Maite Huron, Sophia Oukala, Jerome Lardiere, Nicolas Giraud, Capucine Dupont, "An extensive characterization of various treated waste wood for assessment of suitability with combustion process", Fuel 202, 118-128(2017) https://doi.org/10.1016/j.fuel.2017.04.025
  6. Ana Isabel Moreno, Rafael Font, Juan A. Conesa, "Characterization of gaseous emissions and ashes from the combustion of furniture waste ", Waste Management 58, 299-308(2016) https://doi.org/10.1016/j.wasman.2016.09.046
  7. Ana Isabel Moreno, Rafael Font, "Pyrolysis of furniture wood waste: Decomposition and gases evolved ", Journal of Analytical and Applied Pyrolysis, 113, 464-473(2015) https://doi.org/10.1016/j.jaap.2015.03.008
  8. Fabio Tatano*, Luca Barbadoro, Giovanna Mangani, Silvia Pretelli, Lucia Tombari, Filippo Mangani, "Furniture wood wastes: Experimental property characterisation and burning tests ", Waste Management, 29, 2656-2665 (2009) https://doi.org/10.1016/j.wasman.2009.06.012