Fig. 1. Samho 1-Ri Isometric 1-3.
Fig. 2. Samho 1-Ri Isometric 2-3.
Fig. 3. Samho 1-Ri Isometric 3-3.
Fig. 4. Samho 1-Ri Flownex Model 1-3.
Fig. 5. Samho 1-Ri Flownex Model 2-3.
Fig. 6. Samho 1-Ri Flownex Model 3-3.
Fig. 7. Selected pipeline for backflow simulation.
Fig. 8. Flow changes when 15-4 pipeline is ruptured.
Fig. 9. Flow changes when EFV is reset after repairing 15-4 pipeline.
Fig. 10. Flow changes when 15-10 pipeline is ruptured.
Fig. 11. Flow changes when EFV is reset after repair 15-10 pipeline.
Fig. 12. EFV 15-4 closing and resetting when 15-4 pipeline is ruptured and repaired.
Fig. 13. EFV 15-10 closing and resetting when 15-4 pipeline is ruptured and repaired.
References
- The Center for Chemical Process Safety (CCPS), Guidelines for Chemical Process Quantitative Risk Analysis, 2nd, WILEY, N.Y, (2000)
- 안전보건공단, 누출원 모델링에 관한 기술지침, KOSHA Code:P-14-2000), KOSHA, Ulsan, (2000)
- M.J.Assael, K.E Kakosimos, Fires, Explosions and Toxic Gas Dispersion, CRC press, B.R, (2010)
- T.K. Fannelop, Fluid Mechanical for Industrial Safety and Environmental Protection, Industrial Safety Series, Volume 3, pp. , (1994)
- M-Tech Industrial, Flownex Theory Manual, (2018)
- M-Tech Industrial, Flownex Library Manual, (2018)
- M-Tech Industrial, Flownex General User Manual, (2018)
- J.J. Janse van Rensburg and M. Kleingeld, A CFD method to evaluate the integrated influence of leakage and bypass flows on the PBMR Reactor Unit, Nuclear Engineering and Design, Vol. 240, Page 3841-3850, (2010) https://doi.org/10.1016/j.nucengdes.2010.08.011
- 전형택, Flownex를 이용한 Leak 모델의 개선에 관한 연구, 광운대학교 화학공학과 석사 졸업 논문, (2016)