DOI QR코드

DOI QR Code

Reaction Characteristics of Phytoplankton Before and After the Yellow Dust Event in Taean Peninsula and Yellow Dust Impact Assessment

태안반도주변에서 춘계 황사 전·후 식물플랑크톤 반응특성과 황사분진 영향평가

  • Yoo, Man Ho (Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science) ;
  • Youn, Seok Hyun (Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science) ;
  • Oh, Hyun Ju (Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science) ;
  • Choi, Joong Ki (Department of Oceanography, Inha University)
  • 유만호 (국립수산과학원 기후변화연구과) ;
  • 윤석현 (국립수산과학원 기후변화연구과) ;
  • 오현주 (국립수산과학원 기후변화연구과) ;
  • 최중기 (인하대학교 자연과학대학 해양학과)
  • Received : 2018.10.29
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

To investigate the effect of yellow dust on phytoplankton, a field survey and physiological experiments were carried out in the waters near Taean Peninsula from April 22 to 26, 2006, when yellow dust occurred. Phytoplankton populations during the yellow dust period were in the range of $26{\sim}290{\times}10^3cells{\cdot}L^{-1}$, a somewhat low standing crop. An increase in diatoms (a main taxonomic group), especially benthic diatoms such as Paralia sulcate, a typical species for active mixed sea water areas, was also remarkable. In addition, the Chl-a concentration after yellow dust exceeded the Chl-a concentration change range according to the tide before yellow dust. As the concentration of yellow sand increased in a yellow sand treatment experiment, primary productivity decreased, and the maximum assimilation number showed the same tendency. In the 48h culture experiment, primary productivity of the test group was lower than that of the control group at the early stage (T0) of yellow sand treatment, but after 48 hours (T48), the test group showed higher primary productivity than the control group. In particular, the primary productivity of the test group significantly increased to 321 % after 48 hours. Therefore, strong physical environment accompanied by yellow dust may temporarily inhibit the growth of phytoplankton in the waters adjacent to China in the early stage of yellow dust, but the formation of stable water mass has also been identified as a potential factor promoting the growth of phytoplankton.

황사가 식물플랑크톤에 미치는 영향을 파악하기 위해, 황사가 발생한 2006년 4월 22 ~ 26일까지 태안반도 인근해역에서 현장조사 및 생리실험을 수행하였다. 황사발생동안 식물플랑크톤 군집은 $26{\sim}290{\times}10^3cells{\cdot}L^{-1}$의 범위로 다소 낮은 현존량과 주요 분류군인 돌말류의 증가, 특히 혼합해역의 대표종인 Paralia sulcata와 같은 저서성 돌말류의 증가가 뚜렷하였다. 또한 황사발생 후의 Chl-a 농도는 황사 발생 전의 조석에 따른 Chl-a 농도변화범위를 초과하였다. 황사투여실험에서는 황사투여 농도가 증가함에 따라 일차생산력은 점차 감소하였고, 최대 탄소 동화계수 역시 같은 경향을 보였다. 48시간 배양실험에서는 황사투여 초기(T0)에 실험구(test)가 대조구(control)에 비해 낮은 일차생산력을 보였으나, 48시간 후(T48)에는 실험구가 대조구보다 높은 일차생산력을 보였다. 특히 실험구는 초기보다 48시간 후의 일차생산력이 약 321 %로 크게 증가하였다. 따라서 중국과 인접한 조사해역의 식물플랑크톤은 황사와 함께 수반되는 강한 물리적 환경이 발생초기에 식물플랑크톤의 성장을 일시적으로 저해시킬 수 있으나, 이후 안정적인 수괴가 지속될 경우 식물플랑크톤의 성장을 촉진시키는 잠재적인 요인으로도 파악되었다.

Keywords

References

  1. Alpert, P., J. Herman, Y. J. Kaufman and I. Carmona (2000), Response of the climatic temperature to dust forcing, inferred from total ozone mapping spectrometer (TOMS) aerosol index and the NASA assimilation model, Atmospheric Research, Vol. 53, No. 1, pp. 3-14. https://doi.org/10.1016/S0169-8095(99)00047-2
  2. Anderson, T. L., S. J. Masonis, D. S. Covert, N. C. Ahlquist, S. G. Howell, A. D. Clarke and C. S. McNaughton (2003), Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia, Journal of Geophysical Research: Atmospheres, Vol. 108, No. D23, 8647, doi:10.1029/2002JD003247.
  3. Andreae, M. O. (1995), Climatic effects of changing atmospheric aerosol levels. In: Henderson-Sellers, A. (Ed.), World survey of climatology, Future climates of the world, Vol. 16, Elsevier, Amsterdam, pp. 341-392.
  4. Beardall, J. and I. Morris (1976), The concept of light intensity adaptation in marine phytoplankton: Some experiments with Phaeodactylum tricornutum, Marine Biology, Vol. 37, No. 4, pp. 377-387. https://doi.org/10.1007/BF00387494
  5. Bishop, J. K. B., R. E. Davis and J. T. Sherman (2002), Robotic observations of dust storm enhancement of carbon biomass in the North Pacific, Science, Vol. 298, No. 5594, pp. 817-821. https://doi.org/10.1126/science.1074961
  6. Cote, B. and T. Platt (1983), Day-to-day variations in the spring-summer photosynthetic parameters of coastal marine phytoplankton, Limnology and Oceanography, Vol. 28, No. 2, pp. 320-344. https://doi.org/10.4319/lo.1983.28.2.0320
  7. Carter, C. M., A. H. Ross, D. R. Schiel, C. Howard-Williams and B. Hayden (2005), In situ microcosm experiments on the influence of nitrate and light on phytoplankton community composition, Journal of Experimental Marine Biology and Ecology, Vol. 326, No. 1, pp. 1-13. https://doi.org/10.1016/j.jembe.2005.05.006
  8. Choi, J. K. and J. H. Shim (1986), The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea. III. Phytoplankton composition, standing crops, tychopelagic plankton, J. Oceanol. Soc. Kor., Vol. 21, No. 3, pp. 156-170.
  9. Chun, Y., K. O. Boo, J. Kim, S. U. Park and M. Lee (2001), Synopsis, transport, and physical characteristics of Asian dust in Korea, Journal of Geophysical Research: Atmospheres, Vol. 106, No. D16, pp. 18461-18469. https://doi.org/10.1029/2001JD900184
  10. Chung, K. H. (1996), Deterministic factors of the marine basal production in the coastal waters of Korea, Ph.D Thesis, Inha University Incheon, p. 191.
  11. Duce, R. (1995), Sources, distributions, and fluxes of mineral aerosols and their relationship to climate Vol. 17, pp. 43-72.
  12. Duce, R. A. and N. W. Tindale (1991), Atmospheric transport of iron and its deposition in the ocean, Limnology and Oceanography, Vol. 36, No. 8, pp. 1715-1726. https://doi.org/10.4319/lo.1991.36.8.1715
  13. Duce, R. A., C. K. Unni, B. J. Ray, J. M. Prospero and J. T. Merrill (1980), Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: temporal variability, Science, Vol. 209, No. 4464, pp. 1522-1524. https://doi.org/10.1126/science.209.4464.1522
  14. Dunstan, W. M. (1973), A comparison of the photosynthesis -light intensity relationship in phylogenetically different marine microalgae, Journal of Experimental Marine Biology and Ecology, Vol. 13, No. 3, pp. 181-187. https://doi.org/10.1016/0022-0981(73)90065-8
  15. GESAMP (1989), group of experts on scientific aspects of mairne pollution, working group 14, The atmospheric input of trace species to the world ocean, rep. stud., World Meteorol. Organ. Geneva., Vol. 38, p. 106.
  16. Goudie, A. S. (2009), Dust storms: Recent developments, Journal of Environmental Management, Vol. 90, No. 1, pp. 89-94. https://doi.org/10.1016/j.jenvman.2008.07.007
  17. Grobbelaar, J. U. (1994), Turbulence in mass algal cultures and the role of light/dark fluctuations, Journal of Applied Phycology, Vol. 6, No. 3, pp. 331-335. https://doi.org/10.1007/BF02181947
  18. Han, L., G. Zhuang, S. Cheng and J. Li (2007), The mineral aerosol and its impact on urban pollution aerosols over Beijing, China, Atmospheric Environment, Vol. 41, No. 35, pp. 7533-7546. https://doi.org/10.1016/j.atmosenv.2007.05.046
  19. Han, Y., X. Fang, T. Zhao and S. Kang (2008), Long range trans-Pacific transport and deposition of Asian dust aerosols, Journal of Environmental Sciences, Vol. 20, No. 4, pp. 424-428. https://doi.org/10.1016/S1001-0742(08)62074-4
  20. Harding, L. W., B. W. Meeson, B. B. Prezelin and B. M. Sweeney (1981), Diel periodicity of photosynthesis in marine phytoplankton, Marine Biology, Vol. 61, No. 2, pp. 95-105. https://doi.org/10.1007/BF00386649
  21. Harris, G. P. (1978), Photosynthesis productivity and growth: The physiological ecology of phytoplankton, Arch. Hydrobiol. Beih. Ergeb. Limnol., Vol. 10, pp. 1-17.
  22. Herut, B., T. Zohary, M. D. Krom, R. F. C. Mantoura, P. Pitta, S. Psarra, F. Rassoulzadegan, T. Tanaka and T. Frede Thingstad (2005), Response of East Mediterranean surface water to Saharan dust: On-board microcosm experiment and field observations, Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 52, No. 22, pp. 3024-3040. https://doi.org/10.1016/j.dsr2.2005.09.003
  23. IPCC (2001), Climate change: The scientific basis, Cambridge University Press, Cambridge, UK, pp. 83.
  24. Jickells, T. D. and L. J. Spokes (2001), Atmospheric iron inputs to the oceans, Chapter 4. In: Turner, D., Hunter, K.A. (Ed.), The biogeochemistry of iron in seawater, Wiley, pp. 85.
  25. Jo, C. O., J. Y. Lee, K. A. Park, Y. H. Kim and K. R. Kim (2007), Asian dust initiated early spring bloom in the northern East/Japan Sea, Geophysical Research Letters, Vol. 34, No. 5, L05602, doi:10.1029/2006GL027395.
  26. Kim, J. (2008), Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965-2004), Atmospheric Environment, Vol. 42, No. 19, pp. 4778-4789. https://doi.org/10.1016/j.atmosenv.2008.01.040
  27. Kim, S. W., S. C. Yoon, A. Jefferson, J. A. Ogren, E. G. Dutton, J. G. Won, Y. S. Ghim, B. I. Lee and J. S. Han (2005), Aerosol optical, chemical and physical properties at Gosan, Korea during Asian dust and pollution episodes in 2001, Atmospheric Environment, Vol. 39, No. 1, pp. 39-50. https://doi.org/10.1016/j.atmosenv.2004.09.056
  28. Kotamarthi, V. R. and G. R. Carmichael (1993), A modeling study of the long-range transport of Kosa using particle trajectory methods, Tellus B: Chemical and Physical Meteorology, Vol. 45, No. 5, pp. 426-441. https://doi.org/10.3402/tellusb.v45i5.15740
  29. Laurent, B., B. Marticorena, G. Bergametti, P. Chazette, F. Maignan and C. Schmechtig (2005), Simulation of the mineral dust emission frequencies from desert areas of China and Mongolia using an aerodynamic roughness length map derived from the POLDER/ADEOS 1 surface products, Journal of Geophysical Research: Atmospheres, Vol. 110, No. D18, D18S04, doi:10.1029/2004JD005013.
  30. Lin, T. H. (2001), Long-range transport of yellow sand to Taiwan in Spring 2000: observed evidence and simulation, Atmospheric Environment, Vol. 35, No. 34, pp. 5873-5882. https://doi.org/10.1016/S1352-2310(01)00392-2
  31. MacCaull, W. A. and T. Platt(1977), Diel variations in the photosynthetic parameters of coastal marine phytoplankton, Limnology and Oceanography, Vol. 22, No. 4, pp. 723-731. https://doi.org/10.4319/lo.1977.22.4.0723
  32. Mann, K. H. (1993), Physical oceanography, food chains, and fish stocks: a review, ICES Journal of Marine Science, Vol. 50, No. 2, pp. 105-119. https://doi.org/10.1006/jmsc.1993.1013
  33. Margalef, R. (1978), Life-forms of phytoplankton as survival alternatives in an unstable environment, Oceanologica Acta, Vol. 1, No. 4, pp. 439-509.
  34. McTainsh, G. and C. Strong(2007), The role of aeolian dust in ecosystems, Geomorphology, Vol. 89, No. 1, pp. 39-54. https://doi.org/10.1016/j.geomorph.2006.07.028
  35. Mikami, M., G. Y. Shi, I. Uno, S. Yabuki, Y. Iwasaka, M. Yasui, T. Aoki, T. Y. Tanaka, Y. Kurosaki, K. Masuda, A. Uchiyama, A. Matsuki, T. Sakai, T. Takemi, M. Nakawo, N. Seino, M. Ishizuka, S. Satake, K. Fujita, Y. Hara, K. Kai, S. Kanayama, M. Hayashi, M. Du, Y. Kanai, Y. Yamada, X. Y. Zhang, Z. Shen, H. Zhou, O. Abe, T. Nagai, Y. Tsutsumi, M. Chiba and J. Suzuki(2006), Aeolian dust experiment on climate impact: An overview of Japan-China joint project ADEC, Global and Planetary Change, Vol. 52, No. 1, pp. 142-172. https://doi.org/10.1016/j.gloplacha.2006.03.001
  36. Miller, S. D., A. P. Kuciauskas, M. Liu, Q. Ji, J. S. Reid, D. W. Breed, A. L. Walker and A. A. Mandoos(2008), Haboob dust storms of the southern Arabian Peninsula, Journal of Geophysical Research: Atmospheres, Vol. 113, No. D1, D01202, doi:10.1029/2007JD008550
  37. Mori, I., M. Nishikawa, H. Quan and M. Morita(2002), Estimation of the concentration and chemical composition of kosa aerosols at their origin, Atmospheric Environment, Vol. 36, No. 29, pp. 4569-4575. https://doi.org/10.1016/S1352-2310(02)00489-2
  38. Park, S. U., L. S. Chang and E. H. Lee(2005), Direct radiative forcing due to aerosols in East Asia during a Hwangsa (Asian dust) event observed on 19-23 March 2002 in Korea, Atmospheric Environment, Vol. 39, No. 14, pp. 2593-2606. https://doi.org/10.1016/j.atmosenv.2005.01.041
  39. Parsons, T. R., Y. Maita and C. M. Lalli(1984), A manual of chemical and biological methods for seawater analysis, Pergamon press, Oxford, p. 173.
  40. Platt, T., C. L. Gallegos and W. G. Harrison(1980), Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, Journal of Marine Research, Vol. 38, pp. 687-701.
  41. Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling(1986), Numerical recipes, Cambridge university press, p. 1256.
  42. Ridgwell, A. J. (2003), Implications of the glacial $CO_2$ "iron hypothesis" for quaternary climate change, Geochemistry, Geophysics, Geosystems, Vol. 4, No. 9, 1076, doi:10.1029/2003GC000563.
  43. Shine, K. P. and P. M. d. F. Forster(1999), The effect of human activity on radiative forcing of climate change: a review of recent developments, Global and Planetary Change, Vol. 20, No. 4, pp. 205-225. https://doi.org/10.1016/S0921-8181(99)00017-X
  44. Smayda, J. J. (1970), The suspension and sinking of phytoplankton in the sea, Oceanogr. Mar. Biol. Ann. Rev., Vol. 8, pp. 353-414.
  45. Sokolik, I. N., D. M. Winker, G. Bergametti, D. A. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz and J. E. Penner(2001), Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust, Journal of Geophysical Research: Atmospheres, Vol. 106, No. D16, pp. 18015-18027. https://doi.org/10.1029/2000JD900498
  46. Subba Rao, D. V., F. Al-Yamani and C. V. Nageswara Rao(1999), Eolian dust affects phytoplankton in the waters off Kuwait, the Arabian Gulf, Naturwissenschaften, Vol. 86, No. 11, pp. 525-529. https://doi.org/10.1007/s001140050667
  47. Visser, F., L. J. A. Gerringa, S. J. Van der gaast, H. J. W. De baar and K. R. Timmermans(2003), The role of the reactivity and content of iron of aerosol dust on growth rates of two antarctic diatom species, Journal of Phycology, Vol. 39, No. 6, pp. 1085-1094. https://doi.org/10.1111/j.0022-3646.2003.03-023.x
  48. Yoon, Y. H. (1990), On the yellow sand transported to the Korean peninsula, Asia-Pacific Journal of Atmospheric Sciences, Vol. 26, No. 2, pp. 111-120.
  49. Zhang, S., X. Leng, Y. Feng, C. Ding, Y. Yang, J. Wang, H. Wang and J. Sun(2016), Ecological provinces of spring phytoplankton in the Yellow Sea: species composition, Acta Oceanologica Sinica, Vol. 35, No. 8, pp. 114-125.
  50. Zhang, X. Y., R. Arimoto and Z. S. An(1997), Dust emission from Chinese desert sources linked to variations in atmospheric circulation, Journal of Geophysical Research: Atmospheres, Vol. 102, No. D23, pp. 28041-28047. https://doi.org/10.1029/97JD02300
  51. Zhang, X. Y., R. Arimoto and Z. S. An(1999), Glacial and interglacial patterns for Asian dust transport, Quaternary Science Reviews, Vol. 18, No. 6, pp. 811-819. https://doi.org/10.1016/S0277-3791(98)00028-6

Cited by

  1. Estimating the Economic Value of Improving the Asian Dust Aerosol Model in the Korean Household Sector: A Choice Experiment vol.13, pp.21, 2018, https://doi.org/10.3390/su132112054