DOI QR코드

DOI QR Code

Development of Ingrowth Estimation Equations for Pinus densiflora in Korea Derived from National Forest Inventory Data

국가산림자원조사 자료를 이용한 소나무의 진계생장 추정식 개발

  • Moon, Ga Hyun (Division of Forest Industry Research, National Institute of Forest Science) ;
  • Yim, Jong Su (Division of Forest Industry Research, National Institute of Forest Science) ;
  • Shin, Man Yong (Department of Forest, Environment, and System, Kookmin University)
  • 문가현 (국립산림과학원 산림산업연구과) ;
  • 임종수 (국립산림과학원 산림산업연구과) ;
  • 신만용 (국민대학교 산림환경시스템학과)
  • Received : 2018.08.23
  • Accepted : 2018.10.24
  • Published : 2018.12.31

Abstract

This study was conducted to develop ingrowth estimation equations on Pinus densiflora found in Gangwon Province and in the center of Korean Peninsula, based on the National Forest Inventory (NFI)'s permanent sampling plot data. For this study, identical sampling plots in $5^{th}$ and $6^{th}$ NFI data were collected in order to identify ingrowth amounts for the last 5 years. Following two-stage approaches in developing the ingrowth estimation equations, the logistic regression model was used in the first stage to estimate the ingrowth probability. In the second stage, regression analysis on sampling plots with ingrowth occurrence was used to estimate the ingrowth amount. A candidate model was finally selected as an optimal model after a verification based on three evaluation statistics which include mean difference (MD), standard deviation of difference (SDD) and standard error of difference (SED). In results, a logistic regression model based on the number of sampling plot which did not result in ingrowth (model VI), was selected for an ingrowth probability estimation equation and exponential function including the species composition (SC) variable was optimal for an ingrowth estimation equation (model VII). The ingrowth estimation equations developed in this study also evaluated the estimation ability in various forest stand conditions, and no particular issue in fitness or applicability was observed.

본 연구는 국가산림자원조사(NFI) 고정표본점 자료를 기반으로 우리나라에 분포하는 강원지방소나무와 중부지방소나무의 진계생장 추정식을 개발하기 위한 목적으로 수행되었다. 이를 위해 5년 동안의 진계생장량을 파악할 수 있는 정보를 제공하는 제5차 및 제6차 NFI의 동일 표본점 자료를 활용하였다. 진계생장 추정식 개발을 위한 2단계 접근법에 따라 첫 번째 단계에서는 진계생장 발생확률을 추정하기 위해 로지스틱 회귀모형을 이용하여 분석을 수행하였으며, 두 번째 단계에서는 진계생장이 발생한 표본점만을 대상으로 회귀식을 이용하여 진계생장량을 추정하였다. 또한 최적 모형의 선정은 회귀계수가 추정된 후보모형에 대해 모형의 평균편의(MD), 모형의 정도(SDD), 그리고 모형의 표준오차(SED)의 3가지 평가통계량을 분석한 결과에 근거하여 도출하였다. 그 결과 진계확률 추정식은 진계가 발생하지 않은 표본점 수에 기반한 로지스틱 회귀모형(모형 VI)이 선정되었고, 진계생장량 추정식에는 수종구성(SC) 변수를 포함한 지수함수식(모형 VII)이 최적모형으로 분석되었다. 이상과 같이 개발된 진계생장 추정식은 다양한 임분조건에 대해 추정능력을 평가하였으며, 적합도나 활용적인 측면에서 문제가 없는 것으로 평가되었다.

Keywords

HOMHBJ_2018_v107n4_402_f0001.png 이미지

Figure 1. Study area and a permanent sample plot of 4km sampling intensity.

Table 1. Summary of ingrowth attributes by Pinus densiflora.

HOMHBJ_2018_v107n4_402_t0001.png 이미지

Table 2. Model forms used in this study for the estimation of ingrowth probability.

HOMHBJ_2018_v107n4_402_t0002.png 이미지

Table 3. Model forms for the estimation of ingrowth amount as number of trees per hectare.

HOMHBJ_2018_v107n4_402_t0003.png 이미지

Table 4. Estimation equations for probability of ingrowth occurrence by Pinus densiflora.

HOMHBJ_2018_v107n4_402_t0004.png 이미지

Table 5. Statistics of ingrowth probability estimated by using ingrowth probability equations by Pinus densiflora.

HOMHBJ_2018_v107n4_402_t0005.png 이미지

Table 6. Estimation equations for ingrowth amount as number of trees per hectare by Pinus densiflora.

HOMHBJ_2018_v107n4_402_t0006.png 이미지

Table 7. Validation of estimation equations for ingrowth amount as number of trees per hectare by Pinus densiflora.

HOMHBJ_2018_v107n4_402_t0007.png 이미지

Table 8. Ingrowth amount estimates of number of trees per hectare based on the final ingrowth amount estimation equations byPinus densiflora.

HOMHBJ_2018_v107n4_402_t0008.png 이미지

References

  1. Adame, P., Del Rio, M. and Canellas, I. 2010. Ingrowth model for pyrenean oak stands in north-western Spain using continuous forest inventory data. European Journal of Forest Research 129(4): 669-678. https://doi.org/10.1007/s10342-010-0368-1
  2. Arabatzis, A.A. and Burkhart, H.E. 1992. An evaluation of sampling methods and model forms for estimating height-diameter relationship in loblolly pine. Forest Science 38(1): 192-198.
  3. Barry, S.C. and Welsh, A.H. 2002. Generalized additive modelling and zero inflated count data. Ecological Modelling 157(2): 179-188. https://doi.org/10.1016/S0304-3800(02)00194-1
  4. Bewick, V., Cheek, L. and Ball, J. 2005. Statistics review 14: Logistic regression. Critical Care 9(1): 112-118. https://doi.org/10.1186/cc3045
  5. Botkin, D.B. 1993. Forest dynamics. Oxford University Press. New York, U.S.A. pp. 309.
  6. Brovo, F., Pando, V., Ordonez, C. and Lizarralde, I. 2008. Modelling ingrowth in mediterranean pine forests: A case study from scots pine (Pinus sylvestris L.) and mediterranean maritime pine(Pinus pinaster Ait.) stands in Spain. Forest Systems 17(3): 250-260.
  7. Burnham, K.P. and Anderson, D.R. 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33(2): 261-304. https://doi.org/10.1177/0049124104268644
  8. Byun, W.H., Lee, W.K. and Bae, S.W. 1996. Forest growth yield. Yoochun Media. Seoul, Korea. pp. 399. (In Korean)
  9. Charru, M., Seynave, I., Morneau, F. and Bontemps, J.-D. 2010. Recent changes in forest productivity: An analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. Forest Ecology and Management 260(5): 864-874. https://doi.org/10.1016/j.foreco.2010.06.005
  10. Dale, V.H., Joyce, L.A., McNulty, S. and Neilson, R.P. 2000. The interplay between climate change, forests, and disturbances. The Science of the Total Environment 262(3): 201-204. https://doi.org/10.1016/S0048-9697(00)00522-2
  11. Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C. and Mace, G.M. 2011. Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025): 53-58. https://doi.org/10.1126/science.1200303
  12. Ekstrom, M., Esseen, P.A., Westerlund, B., Grafstrom, A., Jonsson, B.G. and Stahl, G. 2018. Logistic regression for clustered data from environmental monitoring programs. Ecological Informatics 43: 165-173. https://doi.org/10.1016/j.ecoinf.2017.10.006
  13. Fortin, M. and DeBlois, J. 2007. Modelling tree recruitment with zero-inflated models: The example of hardwood stands in southern Quebec, Canada. Forest Science 53(4): 529-539.
  14. Gerhard, C., Buchner, R.D., Klein, A.G. and Schermelleh-Engel, K. 2017. A fit index to assess model fit and detect omitted terms in nonlinear SEM. Structural Equation Modeling: A Multidisciplinary Journal 24(3): 414-427. https://doi.org/10.1080/10705511.2016.1268923
  15. Fourcaud, T., Zhang, X., Stokes, A., Lambers, H. and Korner, C. 2008. Plant growth modelling and applications: The increasing importance of plant architecture in growth models. Annals of Botany 101(8): 1053-1063. https://doi.org/10.1093/aob/mcn050
  16. Han, S.H., Rho, D.K., Cheong, J.H., Kim, S.H. and Cheong, D.J. 2009. Estimation of height-DBH models for Ulmus davidiana by National Forest Inventory data. Proceedings of the Korean Forest Society Conference. pp. 432-434. (In Korean)
  17. Jung, Y.H. 2010. Bayesian inference for repeated count data using zero inflated Poisson mixed model [Master's thesis]. Seoul. Korea University. pp. 55. (In Korean with English abstract)
  18. Kim, Y.H., Kim, T.W., Won, H.K., Lee, K.H. and Shin, M.Y. 2012. Estimation of timber production by thinning scenarios using a forest stand yield model. Journal of Korean Forest Society 101(4): 592-598. (In Korean with abstract English)
  19. Klopcic, M. and Boncina, A. 2012. Recruitment of tree species in mixed selection and irregular shelterwood forest stands. Annals of Forest Science 69(8): 915-925. https://doi.org/10.1007/s13595-012-0224-1
  20. Korea Forest Service. 2012. Tree volume.biomass and yield table. Administrative Publication. pp. 261. (In Korean)
  21. Kuuluvainen, T., Tahvonon, O. and Aakala, T. 2012. Even-aged and uneven-aged forest management in boreal Fennoscandia: a review. Ambio 41(7): 720-737. https://doi.org/10.1007/s13280-012-0289-y
  22. Lee, M.J. 2003. Development of individual tree growth model by forest types [Master's thesis]. Seoul. Kookmin University. pp. 83. (In Korean with English abstract)
  23. Li, R., Weiskittel, A.R. and Kershaw Jr, J.A. 2011. Modeling annualized occurrence, frequency, and composition of ingrowth using mixed-effects zero-inflated models and permanent plots in the Acadian Forest Region of North America. Canadian Journal of Forest Research 41(10): 2077-2089. https://doi.org/10.1139/x11-117
  24. Lim, J.H., Jin, G.Z., Yun, C.W., Shin, J.H. and Bae, S.W. 2004. Stand structure and dynamics of the Pinus parviflora forest in Ulleungdo Island. Journal of Korean Forest Society 93(1): 67-74. (In Korean with abstract English)
  25. Lootens, J.R., Larsen, D.R. and Loewenstein, E.F. 1999. A matrix transition model for an uneven-aged, oak-hickory forest in the Missouri ozark highlands. Proceeding of the Tenth Biennial Southern Silvicultural Research Conference. pp. 536-538.
  26. National Institute of Forest Science. 2014. Development of practical management methods for national forests applied by different silvicultural systems in Mt. Gariwang(2). Research Report. Seoul, Korea. pp. 109. (In Korean)
  27. Qin, Y. 1998. Ingrowth models and juvenile mixedwoods stands dynamics [Master's thesis]. Edmonton, Alberta. University of Alberta. pp. 132.
  28. Seidl, R., Fernandes, P.M., Fonseca, T.F., Gillet, F., Jonsson, K., Merganicova, S., Netherer, A., Apraci, J.D., Bontemps, H., Bugmann, J.R., Gonzalez-Olabarria, P., Lasch, C., Meredieu, F., Moreira, M.J., Schelhaas, M.J. and Mohren, F. 2011. Modelling natural disturbances in forest ecosystems: a review. Ecological Modelling 222(4): 903-924. https://doi.org/10.1016/j.ecolmodel.2010.09.040
  29. Seo, Y.O., Lee, Y.J., Rho, D.K., Kim, S.H., Choi, J.K. and Lee, W.K. 2011. Height-DBH growth models of major tree species in Chungcheong Province. Journal of Korean Forest Society 100(1): 62-69. (In Korean with abstract English)
  30. Shin, M.Y. 1990. The use of ridge regression for yield prediction models with multicollinearity problems. Journal of Korean Forest Society 79(3): 260-268.
  31. Shin, M.Y., Lee, M.J. and An, H.S. 2003. Development of individual tree mortality equations for four coniferous species by using distance-independent competition index. Journal of Korean Forest Society 92(6): 581-589. (In Korean with abstract English)
  32. Shin, M.Y., Lee, S.M. and Lee, D.K. 2005. Forest management using growth and ecological characteristics by site types in the natural deciduous forest. Journal of Korean Forest Society 94(1): 26-33. (In Korean with abstract English)
  33. Son, Y.M., Lee, K.H., Lee, W.K. and Kwon, S.D. 2002. Stem taper equations for six major tree species in Korea. Journal of Korean Forest Society 91(2): 213-218.
  34. Sousa, W.P. 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15: 353-391. https://doi.org/10.1146/annurev.es.15.110184.002033
  35. Vanclay, J.K. 1989. A growth model for north Queensland rainforests. Forest Ecology and Management 27(3-4): 245-271. https://doi.org/10.1016/0378-1127(89)90110-2
  36. Yang, Y. and Huang, S. 2015. Two-stage ingrowth models for four major tree species in Alberta. European Journal of Forest Research 134(6): 991-1004. https://doi.org/10.1007/s10342-015-0904-0
  37. Yim, J.S., Han, W.S., Hwang, J.H., Chung, S.Y., Cho, H.K. and Shin, M.Y. 2009. Estimation of forest biomass based upon Satellite data and National Forest Inventory data. Korean Journal of Remote Sensing 25(4): 311-320. (In Korean with abstract English)