DOI QR코드

DOI QR Code

Analysis of Genetic Characteristic of Jujube (Ziziphus jujuba Mill.) Cultivated in Korea Revealed by ISSR Markers

ISSR 표지를 이용한 국내 재배 대추나무의 유전특성 분석

  • Nam, Jae-Ik (Division of Forest Special Products, National Institute of Forest Science) ;
  • Lee, Uk (Division of Forest Special Products, National Institute of Forest Science) ;
  • Kim, Sea-Hyun (Division of Forest Special Products, National Institute of Forest Science)
  • 남재익 (국립산림과학원 산림소득자원연구과) ;
  • 이욱 (국립산림과학원 산림소득자원연구과) ;
  • 김세현 (국립산림과학원 산림소득자원연구과)
  • Received : 2018.08.01
  • Accepted : 2018.11.13
  • Published : 2018.12.31

Abstract

Chinese jujube (Ziziphus jujuba Mill.), a member of family Rhamnaceae, is an economically important species. It has high nutritional value in fruits, and its medicinal properties have led to extensive use in traditional oriental medicine. In this study, we investigated the genetic characteristics of 270 jujube germplasms collected from the six major jujube fruit production areas in Korea including Boeun and Gyeongsan, in order to understand the current situation on cultivated varieties of domestic jujube and to obtain useful data for selection of superior germplasms and establishing their breeding plans. The results of ISSR marker analysis revealed that the Shannon's information index of the 270 germplasms was 0.107 and the genetic similarity was as high as 0.935 showing the dominance of a specific cultivar or germplasm, and almost 67% (180) of them were identified at the same genotype with 'Bokjo'. The domestic commercial jujube populations could be characterized by very low genetic diversity and thus may be vulnerable to external disturbances. In addition, it seems that most of the jujube fruits in domestic market were largely produced through parthenocarpy.

대추나무는 갈매나무과에 속하며 과실에 높은 영양가를 지니고 있어 전통 한의학에서 널리 사용되고 있는 경제적으로 중요한 종이다. 국내에서 재배되고 있는 대추나무들의 품종실태를 파악함으로서 우량개체 선발과 육종계획 수립에 유용한 유전정보를 얻고자 보은, 경산 등 대추 주산지 6곳에서 수집된 대추나무 270개체를 대상으로 ISSR 표지 분석을 수행하였다. 그 결과 유전적 다양성을 보여주는 S.I.값은 0.107, 유전적 유사도는 0.935로 높게 나타나 연구에 사용된 대추나무들이 특정 품종 또는 개체에 편중되어 있었다. 또한 270개체 중 67%인 180개체가 '복조'와 동일한 유전자형을 나타내는 것으로 관찰되었다. 본 연구를 통해 국내 재배 대추나무 개체들의 유전적 다양성이 매우 낮은 것으로 파악되었다. 이에 외부 교란에 취약할 가능성이 큰 것으로 예상되며, 시장에 판매되고 있는 대부분의 대추가 단위결실을 통해 생산되는 것으로 판단된다.

Keywords

HOMHBJ_2018_v107n4_378_f0001.png 이미지

Figure 1. Map showing the major jujube producing cities in Korea where jujube samples were collected. Cities are marked with a red circle and numbered from 1 to 6.

HOMHBJ_2018_v107n4_378_f0002.png 이미지

Figure 2. Dendrogram generated by UPGMA cluster analysis from thirty one jujube genotypes and six jujube cultivars. Genotype D and W were identified as the major cultivated cultivar ‘Bokjo’ and local cultivar ‘Boeundaechu’. The numbers in parenthesis indicate how many individuals are in each genotype.

Table 1. Sample location and sample size of jujube germplasm examined in the ISSR analysis. Six jujube sample collecting locations are the major jujube producing cities in Korea.

HOMHBJ_2018_v107n4_378_t0001.png 이미지

Table 2. ISSR primers used in this study and summary of ISSR markers from 270 cultivated jujube samples.

HOMHBJ_2018_v107n4_378_t0002.png 이미지

Table 3. Identified genotypes, their number and ‘Bokjo’ cultivar frequency in the six jujube sample collecting locations.

HOMHBJ_2018_v107n4_378_t0003.png 이미지

Table 4. Summary of genetic variation statistics for all loci in 270 cultivated jujube samples.

HOMHBJ_2018_v107n4_378_t0004.png 이미지

References

  1. Alansi, S., Tarroum, M., Qurainy, F.A., Khan, S. and Nadeem, M. 2016. Use of ISSR marker to assess the genetic diversity in wild medicianl Ziziphus spina-christi(L.) Willd. collected from different regions of Saudi Arabia. Biotechnology and Biotechnological Equipment 30(5) : 942-947. https://doi.org/10.1080/13102818.2016.1199287
  2. Allaby, R.G. 2008. The rise of plant domestication: Life in the slow lane. Biologist 55: 94-99.
  3. Azam-Ali, S., Bonkoungou, E., Bow, C., deKock, C., Godara, A. and Williams, J.T. 2006. Ber and other jujubes. International Centre for Underutilised Crops University of Southampton, Southampton, SO17 1BJ, UK. pp. 289.
  4. Barazani, Q., Westberg, E., Hanin, N., Dag, A., Kerem, Z., Tugendhaft, Y., Hmidat, M., Hijawi, T. and Joachim, W.K. 2014. A comparative analysis of genetic variation in rootstocks and scions of old olive trees - a window into the history of olive cultivation practices and past genetic variation. BMC Plant Biology. doi: 10.1186/1471-2229-14-146.
  5. Bourguiba, H., Audergon, J.M., Krichen, L., Farah, N.T., mamouni, A., Trabelsi, S., D'Dnofrio, C., Asma, B.M., Santoni, S. and Khadari, B. 2012. Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biology. doi: 10.1186/1471-2229-12-49.
  6. Charlesworth, D. and Willis, J.H. 2009. The genetics of inbreeding depression. Nature Reviews Genetics 10: 783-796. https://doi.org/10.1038/nrg2664
  7. Chi, A., Kang, C., Zhang, Y., Tang, L., Guo, H., Li, H. and Zhang, K. 2015. Immunomodulating and antioxidant effects of polysaccharide conjugates from the fruits of Ziziphus jujube on chronic fatigue syndrome rats. Carbohydrate Polymer 122: 189-196. https://doi.org/10.1016/j.carbpol.2014.12.082
  8. Collard, B.C.Y. and Mackill, D.J. 2008. Marker assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B Biological Sciences 363: 557-572. https://doi.org/10.1098/rstb.2007.2170
  9. Cooke, R.J. 1999. Modern methods for the cultivar identification and the transgenic plant challenge. Seed Science and Technology 27: 669-680.
  10. Cooper, M., Smith, O.S., Graham, G., Arthur, L., Feng, L. and Podlich, D.W. 2004. Genomics, genetics, and plant breeding: a private sector perspective. Crop Science 44: 1907-1913. https://doi.org/10.2135/cropsci2004.1907
  11. Doebley, J.F., Gaut, B.S. and Smith, B.D. 2006. The molecular genetics of cop domestication. Cell 127: 1309-1321. https://doi.org/10.1016/j.cell.2006.12.006
  12. Frankel, O.H. 1970. Genetic dangers in the green revolution. World Agriculture 19: 9-14.
  13. Ganopoulos, I.V., Kazantzis, K., Chatzicharisis, I., Karayiannis, I. and Tsaftaris, A.S. 2011. Genetic diversity, structure and fruit trait associations in greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica 181(2): 237-251. https://doi.org/10.1007/s10681-011-0416-z
  14. Hager, M.D. and Edward, T. 1989. My favorite tree, the jujube. California Rare Fruit Growers Newsletter. California, USA. 21: 31-32.
  15. Hardner, C.M. and Potts, B.M. 1995. Inbreeding depression and changes in variation after selfing in Eucalyptus globulus ssp. globulus. Silvae Genetica 44: 46-54.
  16. Han, C.F. 2014. China agriculture yearbook. China agriculture publishing house, Beijing, China. pp. 221.
  17. Horsfall, T. and Chairs, G. 1972. Genetic vulnerability of major crops. National Academy of Sciences, Washington, USA. pp. 307.
  18. Huang, X., Kojima-Yuasa, A., Norikura, T., Kennedy, D.O., Hasuma, T. and Matsui-Yuasa, I. 2007. Mechanism of the anti-cancer activity of Zizyphus jujuba in HepG2 cells. The American Journal of Chinese Medicine 35: 517-532. https://doi.org/10.1142/S0192415X0700503X
  19. Khadivi, A., Esmaeili, A. and Mardani, N. 2018. Genetic diversity of cultivated pistachio as revealed by microsatellite molecular markers. Biotechnology and Biotechnolgical Equipment 32(3): 602-609. https://doi.org/10.1080/13102818.2018.1442745
  20. KFS (Korea Forest Service). 2015. Forestay production cost survey report. pp. 48. Korea Forest Service. Daejeon. Korea.
  21. KFS (Korea Forest Service). 2017. Production of forest products. pp. 28. Korea Forest Service. Daejeon. Korea.
  22. Li, J.D., Bi, H.T., Li, H.T., Li, Z.S. and Feng, J.C. 2009. Genetic analysis of Ziziphus jujuba 'Huizao' using ISSR marker. Acta Horticulturae 840: 135-141.
  23. Li, L., Peng, J.Y. and Bai, R.X. 2010. Analysis of the genetic relationships in Chinese Ziziphus with SRAP markers. Agricultural Sciences in China 9(9): 1278-1284. https://doi.org/10.1016/S1671-2927(09)60217-0
  24. Liu, M.J. and Cheng, C.Y. 1995. A taxonomic study of the genus Ziziphus. Acta Horticulturae 390: 161-165.
  25. Liu, P., Xue, H.Z., Zhou, X.Y., Liu, M.J., Mao, Y.M. and Zhou, J.Y. 2004. Study on the biological basis of pollination in chinese jujube (Zizyphus jujuba) and wild jujube (Z. spinosa). Journal of Fruit Science 21(3): 224-228. https://doi.org/10.3969/j.issn.1009-9980.2004.03.009
  26. Ma, Q.H., Wang, G.X. and Liang, L.S. 2011. Development and characterization of SSR markers in Chinese jujube (Ziziphus jujuba Mill.) and its related species. Scientia Horticulturae 129: 597-602. https://doi.org/10.1016/j.scienta.2011.04.032
  27. McCouch, S. 2004. Diversifying selection in plant breeding. PLoS Biology 2: 347. https://doi.org/10.1371/journal.pbio.0020347
  28. Miller, A.J. and Schaal, B.A. 2006. Domestication and the distribution of genetic variation in wild and cultivated populations of the Mesoamerican fruits tree Spondias purpurea L. (Anacardiaceae). Molecular Ecology 15: 1467-1480. https://doi.org/10.1111/j.1365-294X.2006.02834.x
  29. Munthali, C.R.Y., Chirwa, P.W., Changadeya, W.J. and Akinnifesi, F.K. 2013. Genetic differentiation and diversity of Adansonia digitata L (baobab) in Malawi using microsatellite markers. Agroforest System 87: 117-130. https://doi.org/10.1007/s10457-012-9528-2
  30. Nam, J.I. 2016. Development of genetic markers for identification of jujube (Ziziphus jujuba Mill.) cultivars. Cheongju. Chungbuk National University.
  31. Neeraja, G., Reddy, S.A. and Babu, R.S.H. 1995. Fruit set, fruit drop and fruiting behaviour in certain ber (Ziziphus mauritiana Lamk.) cultivars. Journal of Research, Andhra Pradesh Agricultural University, Hyderabad, India. 3(3/4): 17-21.
  32. Nei, M. 1973. Analysis of gene diversity in subdivided populations. National Academy of Sciences, Washington, USA. 70: 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  33. Niebur, W.S., Rafalski, J.A., Smith, O.S. and Cooper, M. 2004. Applications of genomics technologies to enhance rate of genetic progress for yield of maize within a commercial breeding program. In: Fischer, T., Turner, N., Angus, J., McIntyre, L., Robertson, M., Borrell, A. and Lloyd, D. (eds.). New Directions for a Diverse Planet: Proceedings for the 4th International Crop Science Congress. Regional Institute, Gosford, Australia.
  34. Olsen, K.M. and Gross, B.L. 2008. Detecting multiple origins of domesticated crops. National Academy of Sciences, Washington, USA. 105: 13701-13702. https://doi.org/10.1073/pnas.0807439105
  35. Plastina, P., Bonofiglio, D., Vizza, D., Fazio, A., Rovito, D., Giordano, C., Barone, L., Catalano, S. and Gabriele, B. 2012. Identification of bioactive constituents of Ziziphus jujube fruit extracts exerting antiproliferative and apoptotic effects in human breast cancer cells. Journal of Ethnopharmacology 140: 325-332. https://doi.org/10.1016/j.jep.2012.01.022
  36. Peakall, R. and Smouse, P.E. 2012. GenAlEx 6.5: genetic analysis in excel. population genetic software for teaching and research-an update. Bioinformatics 28(19): 2537-2539. https://doi.org/10.1093/bioinformatics/bts460
  37. Ploetz, R.C. 2006. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. The American Phytopathological Society Journals 96(6): 653-656. https://doi.org/10.1094/PHYTO-96-0653
  38. Rajesh, S. and Misra, K.K. 2004. Correlation studies in ber (Ziziphus mauritiana Lam.) Scientific Horticulture 9: 37-40.
  39. Smith J.S.C. and Smith O.S. 1992. Fingerprinting crop varieties. In: Donald LS, editor. Advances in agronomy. Academic Press. pp. 85-140.
  40. Singh, S.K., Chhajer, S., Pathak, R., Bhatt, R.K. and Kalia, R.K. 2017. Genetic diversity of indian jujube cultivars using SCoT, ISSR and rDNA markers. Tree Genetics and Genomes 13: 12. https://doi.org/10.1007/s11295-016-1092-x
  41. Singh, Z., Dhillon, B.S. and Sandhu, A.S. 1991. Relationship of embryo degeneration with fruit drop and its pattern in different cultivars of ber. Indian Journal of Horticulture 48(4): 247-251.
  42. Tanksley, S.D. and McCouch, R. 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: 1063-1066. https://doi.org/10.1126/science.277.5329.1063
  43. Troyan, A.V. and Kruglyakov, G.N. 1972. Produce with high vitamin content. Sadovodstvo 12: 30.
  44. Wang, S.Q., Liu, Y., Ma, L.Y., Liu, H.B., Tang, Y., Wu, L.P., Wang, Z., Li, Y.Y., Wu, R.L. and Pang, X.M. 2014. Isolation and characterization of microsatellite markers and analysis of genetic diversity in Chinese jujube (Ziziphus jujuba Mill.). PLoS ONE 9(6): e99842. doi: 10.1371/journal.pone.0099842.
  45. Yeh, F. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H. and Mao, J. X. 1999. POPGENE ver. 1.32: The user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre. University of Alberta, Canada.
  46. Yuan, Q.J., Zhang, Z.Y., Hu, J., Guo, L.P., Shaq, A.J. and Huang, L.Q. 2010. Impacts of recent cultivation on genetic diversity pattern of a medicinal plant, Scutellaria baicalensis (Lamiaceae). BMC Genetics. doi: 10.1186/1471-2156-11-29.

Cited by

  1. 1년생 '대능' 대추 회초리 묘목 재식 시 주간 절단 정도 설정 vol.40, pp.2, 2018, https://doi.org/10.5338/kjea.2021.40.2.9