DOI QR코드

DOI QR Code

Effects of selenate and L-glutamate on the growth of Mycobacterium tuberculosis complex

  • Kim, Seung-Cheol (Department of Microbiology and Institute for Immunology and Immunological Disease, Yonsei University College of Medicine) ;
  • Kim, Jin-Sook (Food & Drug Administration) ;
  • Monoldorova, Sezim (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University) ;
  • Cho, Jang-Eun (Department of Biomedical Laboratory Science, Daegu Health College) ;
  • Hong, Minsun (Division of Biological Science and Technology, College of Science and Technology, Yonsei University) ;
  • Jeon, Bo-Young (Department of Biomedical Laboratory Science, College of Health Science, Yonsei University)
  • Received : 2018.03.29
  • Accepted : 2018.12.01
  • Published : 2018.12.30

Abstract

Mycobacterium tuberculosis (M. tuberculosis) complex is the causative agent of tuberculosis (TB) in humans and bovine TB in mammalian hosts and grows very slowly. Selenium is a central molecule in nitrogen metabolism and an essential ingredient for all living cells and glutamic acid. The effects of selenium on the growth of M. tuberculosis, a representative slow-growing Mycobacterium species, were investigated and measured using the BacT Alert 3D System (MB/BacT System). Sodium selenate, at a final concentration of $10{\mu}g/mL$, reduced the average time-to detection (TTD) to 197.2 hours (95% confidence interval (CI), 179.6~214.8) from 225.1 hours (95% CI, 218~232.0) in the control culture media (P<0.05). The TTD did not increase with $\text\tiny{L}$-glutamate concentrations up to $10{\mu}g/mL$, but a significant reduction in the TTD was observed in the presence of $20{\mu}g/mL$ ${\text\tiny{L}}$-glutamate in culture media (P<0.05). In conclusion, selenate and ${\text\tiny{L}}$-glutamate enhance the growth of M. tuberculosis.

Keywords

GCOSBX_2018_v41n4_239_f0001.png 이미지

Fig. 1. Growth of Mycobacterium tuberculosis in the MB/BacT System. The growth of M. tuberculosis was monitored via the reflectance units ofthe MB/BacT System (A) and by viable bacterial counting of M. tuberculosis (B).

GCOSBX_2018_v41n4_239_f0002.png 이미지

Fig. 2. Effects of sodium selenate on the growth of M. tuberculosis. Sodium selenate was added to the culture media (Middlebrook 7H9 broth media supplemented with 10% OADC) at final concentrations of 5, 10, or 20 μg/mL. The growth of M. tuberculosis was measured using the time-to-detection (TTD). Each treatment group was tested using five MB/BacT culture bottles.

GCOSBX_2018_v41n4_239_f0003.png 이미지

Fig. 3. Effects of L-glutamate on the growth of M. tuberculosis. L-Glutamate was added to the culture media at final concentrations of 5, 10, or 20 μg/mL. The growth of M. tuberculosis was measured using the TTD. Each treatment group was tested using five MB/BacT culture bottles.

References

  1. Abrahams KA, Besra GS. 2016. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology 1-18.
  2. Barceloux DG. 1999. Selenium. J Toxicol Clin Toxicol 37: 145-172. https://doi.org/10.1081/CLT-100102417
  3. Bebien M, Chauvin JP, Adriano JM, Grosse S, Vermeglio A. 2001. Effect of selenite on growth and protein synthesis in the phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 67: 4440-4447. https://doi.org/10.1128/AEM.67.10.4440-4447.2001
  4. Bock A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F. 1991. Selenocysteine: the 21st amino acid. Mol Microbiol 5: 515-520. https://doi.org/10.1111/j.1365-2958.1991.tb00722.x
  5. Ernst JD, Trevejo-Nunez G, Banaiee N. 2007. Genomics and the evolution, pathogenesis, and diagnosis of tuberculosis. J Clin Invest 117: 1738-1745. https://doi.org/10.1172/JCI31810
  6. Getahun H, Matteelli A, Abubakar I, Aziz MA, Baddeley A, Barreira D, Den Boon S, Borroto Gutierrez SM, Bruchfeld J, Burhan E, Cavalcante S, Cedillos R, Chaisson R, Chee CB, Chesire L, Corbett E, Dara M, Denholm J, de Vries G, Falzon D, Ford N, Gale-Rowe M, Gilpin C, Girardi E, Go UY, Govindasamy D, D Grant A, Grzemska M, Harris R, Horsburgh CR Jr, Ismayilov A, Jaramillo E, Kik S, Kranzer K, Lienhardt C, LoBue P, Lonnroth K, Marks G, Menzies D, Migliori GB, Mosca D, Mukadi YD, Mwinga A, Nelson L, Nishikiori N, Oordt-Speets A, Rangaka MX, Reis A, Rotz L, Sandgren A, Sane Schepisi M, Schunemann HJ, Sharma SK, Sotgiu G, Stagg HR, Sterling TR, Tayeb T, Uplekar M, van der Werf MJ, Vandevelde W, van Kessel F, van't Hoog A, Varma JK, Vezhnina N, Voniatis C, Vonk Noordegraaf-Schouten M, Weil D, Weyer K, Wilkinson RJ, Yoshiyama T, Zellweger JP, Raviglione M. 2015. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur Respir J 46: 1563-1576. https://doi.org/10.1183/13993003.01245-2015
  7. Hirschfield GR, McNeil M, Brennan PJ. 1990. Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis. J Bacteriol 172: 1005-1013. https://doi.org/10.1128/jb.172.2.1005-1013.1990
  8. Ji M, Cho B, Cho YS, Park SY, Cho SN, Jeon BY, Yoon BS. 2014. Development of a quantitative sandwich enzyme-linked immunosorbent assay for detecting the MPT64 antigen of Mycobacterium tuberculosis. Yonsei Med J 55: 746-752. https://doi.org/10.3349/ymj.2014.55.3.746
  9. Kim SC, Jeon BY, Kim JS, Choi IH, Kim J, Woo J. 2016. Performance of the BacT Alert 3D System Versus Solid Media for Recovery and Drug Susceptibility Testing of Mycobacterium tuberculosis in a Tertiary Hospital in Korea. Tuberc Respir Dis (Seoul) 79: 282-288. https://doi.org/10.4046/trd.2016.79.4.282
  10. Klose KE, Mekalanos JJ. 1997. Simultaneous prevention of glutamine synthesis and high-affinity transport attenuates Salmonella typhimurium virulence. Infect Immun 65: 587-596.
  11. Li ZY, Guo SY, Li L. 2003. Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresour Technol 89: 171-176. https://doi.org/10.1016/S0960-8524(03)00041-5
  12. Pesciaroli M, Alvarez J, Boniotti MB, Cagiola M, Di Marco V, Marianelli C, Pacciarini M, Pasquali P. 2014. Tuberculosis in domestic animal species. Res Vet Sci 97 (Suppl): S78-S85. https://doi.org/10.1016/j.rvsc.2014.05.015
  13. Pfyffer GE, Welscher H, Kissling P, Cieslak C, Casal MJ, Gutierrez J, Rusch-Gerdes S. 1997. Comparison of the Mycobacterial Growth Indicator Tube (MGIT) with Radiometric and solid culture for recovery of acid-fast bacilli. J Clin Microbiol 35: 364-368.
  14. Rehm N, Georgi T, Hiery E, Degner U, Schmiedl A, Burkovski A, Bott M. 2010. L-Glutamine as a nitrogen source for Corynebacterium glutamicum: derepression of the AmtR regulon and implications for nitrogen sensing. Microbiology 156: 3180-3193. https://doi.org/10.1099/mic.0.040667-0
  15. Reitzer LJ. 1996. Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, L-alanine, D-alanine. In: Neidhardt FC, Curtiss R, ed. Escherichia and Salmanella typhimurium. 2nd ed. Washington, D.C.: ASM Press 391-407.
  16. Smalley DL, Jaquess PA, Layne JS. 1980. Selenium-enriched medium for Legionella pneumophila. J Clin Microbiol 12: 32-34.
  17. Tullius MV, Harth G, Horwitz MA. 2003. Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect Immun 71: 3927-3936. https://doi.org/10.1128/IAI.71.7.3927-3936.2003