DOI QR코드

DOI QR Code

Performance Analysis of Fractional Frequency Reuse Scheme for Enterprise Femtocell Networks

기업형 펨토셀 네트워크에서 부분 주파수 재사용 방법의 성능분석

  • Kim, Se-Jin (Department of Computer Science and Statistics, Chosun University)
  • Received : 2017.08.22
  • Accepted : 2017.11.28
  • Published : 2018.02.28

Abstract

In this paper, we propose a novel frequency reuse method using the fractional frequency reuse (FFR) for enterprise femtocell networks (EFNs) in which a lot of femtocell base stations (fBSs) are deployed in a buinding, e.g., business companies, department stores, etc, and evaluate the system performance for the downlink of EFNs. First, we introduce the concept of the split reuse method to allocate the frequency bandwidth with considering the interference between the macrocell and femtocell. Then, we propose the resource allocation with the FFR for fBSs of EFNs to reduce the interference and increase the system capacity. Through simulations, we show that the proposed FFR method outperforms a traditional resource allocation method with frequency reuse factor 4 in terms of the mean fUE capacity, total EFN capacity, and outage probability.

본 논문에서는 회사 또는 백화점 등과 같은 고층 건물에 다수의 펨토셀 기지국들(Femtocell base stations, fBSs)이 밀집되어 배치되는 기업형 펨토셀 네트워크(Enterprise femtocell network, EFN) 환경에서 부분 주파수 재사용 (Fractional frequency reuse, FFR) 자원할당 방법을 이용하여 하향링크에 대한 시스템 성능을 분석한다. 이를 위해, 먼저 매크로셀과 펨토셀 사이의 주파수 간섭을 완화시키는 Split reuse 주파수 할당 방법에 대해 소개하고, 이후 EFN의 fBS들에게 주파수 간섭 완화 및 주파수 효율을 극대화할 수 있는 FFR을 이용한 자원할당 방법을 제안한다. 마지막으로 시뮬레이션을 통해 제안하는 FFR 자원할당 방법의 시스템 성능을 분석하고, EFN 환경에서 주파수 재사용 계수(Frequency reuse factor: FRF)를 4로 사용하는 전형적인 FRF 4 방법보다 제안하는 FFR 자원할당 방법이 평균 fUE 용량, 전체 EFN 용량, 그리고 Outage probability 측면에서 우수한 성능임을 보인다.

Keywords

References

  1. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021, White paper, CISCO, 2017. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
  2. A. d. l. Fuente, R. P. Leal, A. G. Armada, "New Technologies and Trends for Next Generation Mobile Broadcasting Services," IEEE Communications Magazine, Vol. 54, No. 11, pp.217-223, 2016. https://doi.org/10.1109/MCOM.2016.1600216RP
  3. V. Chandrasekhar, J.G. Andrews, and A. Gatherer, "Femtocell Networks: A Survey," IEEE Commu -nication Magazine, Vol. 46, No. 9, pp.59-67, 2008. https://doi.org/10.1109/MCOM.2008.4623708
  4. S. Fortes, A. Aguilar-Garcia, R. Barco, F. B. Barba, J. A. Fernandez-luque; A. Fernandez-Duran, "Management architecture for location-aware self-organizing LTE/LTE-a small cell networks," IEEE Communications Magazine, Vol. 53, No. 1, pp.294-302, 2015. https://doi.org/10.1109/MCOM.2015.7010548
  5. N. Zhao, X. Liu, F. R. Yu, M. Li, V. C. M. Leung, "Communications, caching, and computing oriented small cell networks with interference alignment," IEEE Communications Magazine, Vol. 54, No. 9, pp.29-35, 2016. https://doi.org/10.1109/MCOM.2016.7565184
  6. J. M. R. Aviles, S. Luna-Ramirez, M. Toril, F. Ruiz, I. de la Bandera-Cascales, P. Munoz-Luengo, "Analysis of load sharing techniques in enterprise LTE femtocells," WiAd 2011, pp.195-200, 2011. https://doi.org/10.1109/WiAd.2011.5983310
  7. G. Cao, D. Yang, R. An, X. Ye, R. Zheng, X. Zhang, "An adaptive sub-band allocation scheme for dense femtocell environment," WCNC 2011, pp.102-107, 2011. https://doi.org/10.1109/WCNC.2011.5779114
  8. 3GPP TS 22.220, Service Requirements for Home NodeB (HNB) and Home eNodeB (HeNB), 2009. http://www.tech-invite.com/3m22/tinv-3gpp-22-220.html
  9. http://www.smallcellforum.org, Small-Cell Forum.
  10. Y. Shi, A. B. MacKenzie, L. A. DaSilva, "On Resource Reuse for Cellular Networks with Femto-and Macrocell Coexistence," IEEE GLOBECOM 2010, pp.1-6, 2011. https://doi.org/10.1109/GLOCOM.2010.5683443
  11. 3GPP TSG-RAN WG 4, R4-092042, Simulation assumptions and parameters for FDD HeNB RF requirements, 2009. http://www.etsi.org/deliver/etsi_tr/136900_136999/136921/09.00.00_60/tr_136921v090000p.pdf