DOI QR코드

DOI QR Code

Pre- and Postsynaptic Actions of Reactive Oxygen Species and Nitrogen Species in Spinal Substantia Gelatinosa Neurons

  • Park, Areum (Dept. of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University) ;
  • Chun, Sang Woo (Dept. of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University)
  • Received : 2018.12.04
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

Reactive oxygen species (ROS) and nitrogen species (RNS) are involved in cellular signaling processes as a cause of oxidative stress. According to recent studies, ROS and RNS are important signaling molecules involved in pain transmission through spinal mechanisms. In this study, a patch clamp recording was used in spinal slices of rats to investigate the action mechanisms of $O_2{^{{\bullet}_-}}$ and NO on the excitability of substantia gelatinosa (SG) neuron. The application of xanthine and xanthine oxidase (X/XO) compound, a ROS donor, induced inward currents and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in slice preparation. The application of S-nitroso-N-acetyl-DL-penicillamine (SNAP), a RNS donor, also induced inward currents and increased the frequency of sEPSC. In a single cell preparation, X/XO and SNAP had no effect on the inward currents, revealing the involvement of presynaptic action. X/XO and SNAP induced a membrane depolarization in current clamp conditions which was significantly decreased by the addition of thapsigargin to an external calcium free solution for blocking synaptic transmission. Furthermore, X/XO and SNAP increased the frequency of action potentials evoked by depolarizing current pulses, suggesting the involvement of postsynaptic action. According to these results, it was estblished that elevated ROS and RNS in the spinal cord can sensitize the dorsal horn neurons via pre- and postsynaptic mechanisms. Therefore, ROS and RNS play similar roles in the regulation of the membrane excitability of SG neurons.

Keywords

References

  1. Yoshimura M, Jessel TM. Membrane properties of rat substantia gelatinosa neurons in vitro. J Neurophysiol. 1989;62:109-118. doi:10.1152/jn.1989.62.1.109
  2. Liu D, Liu J, Sun D and Wen J. The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber-Weiss reaction. J Neurotrauma 2004.;21:805-816. doi:10.1089/08977150412 69650
  3. Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther. 2004;309:869-878. doi:10.1124/jpet.103.064154
  4. Baran CP, Zeigler MM, Tridandapani S, Marsh CB. The role of ROS and RNA in regulating life and death of blood monocytes. Curr Pharm Des. 2004;10:855-866. doi:10.2174/1381612043452866
  5. Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G. The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol. 2006;21(1):69-80. doi: 10.14670/HH-21.69
  6. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung J. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain. 2004;111:116-124. doi:10.1016/j.pain.2004.06.008
  7. Schwartz ES, Lee I, Chung K, Chung JM. Oxidative stress in the spinal cord is an important contributor in capsaicininduced mechanical secondary hyperalgesia in mice. Pain. 2008;15:138(3):514-524. doi:10.1016/j.pain.2008.01.029
  8. Chu YC, Guan Y, Skinner J, Raja SN, Johns RA, Tao YX. Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund's adjuvant-induced persistent pain. Pain. 2005;119:113-123. doi:10.1016/j.pain.2005.09.024
  9. Guan Y, Yaster M, Raja SN, Tao YX. Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice. Mol Pain. 2007;3:29. doi:10.1186/1744-8069-3-29
  10. Tanabe M, Nagatani Y, Saitoh K, Takasu K, Ono H. Pharmacological assessments of nitric oxide synthase isoforms and downstream diversity of NO signaling in the maintenance of thermal and mechanical hypersensitivity after peripheral nerve injury in mice. Neuropharmacol. 2009;56:702-708. doi:10.1016/j.neuropharm.2008.12.003
  11. Durate ID, Lorenzetti BB, Ferreira SH. Peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway. Eur J Pharmacol. 1990;186:289-293. doi:10.1016/0014-2999(90)90446-D
  12. Lee HI, Park A, Chun SW. Effects of NaOCl on neuronal excitability and intracellular calcium concentration in rat spinal substantia gelatinosa neurons. International J Oral Biol. 2013;38:5-12. doi:10.11620/IJOB.2013.38.1.005
  13. Park A, Lee HI, Semjid D, Chun SW. Dual effect of exogenous nitric oxide on neuronal excitability in rat substantia gelatinosa neurons. Neural Plast. 2014;2014:628531. doi:10.1155/2014/628531
  14. Kim HY, Lee IH, Chun SW, Kim HK. Reactive oxygen species donors increase the responsiveness of dorsal horn neurons and induce mechanical hyperalgesia in rats. Neural Plast. 2015;2015:293423. doi:10.1155/2015/293423
  15. Lopez-Garcia JA, King AE. Membrane properties of physiologically classified rat dorsal horn neurons in vitro: correlation with cutaneous sensory afferent input. Eur J Neurosci. 1994;6:998-1007. doi:10.1111/j.1460-9568.1994.tb00594.x
  16. Grudt TJ, Perl ER. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol. 2002;540:189-207. doi:10.1113/jphysiol.2001.012890
  17. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95. doi:10.1152/physrev.00018.2001
  18. Schwartz ES, Lee I, Chung K, Chung JM. Oxidative stress in the spinal cord is an important contributor in capsaicininduced mechanical secondary hyperalgesia in mice. Pain. 2008;15:138(3):514-24. doi:10.1016/j.pain.2008.01.029
  19. Kim HY, Chung JM, Chung K. Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: the effect of mitochondrial electron transport complex inhibitors. Neurosci Lett. 2008;5;447(1): 87-91. doi:10.1016/j.neulet.2008.09.041
  20. Schwartz ES, Kim HY, Wang J, Lee I, Klann E, Chung JM, Chung K. Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci. 2009;7;29(1):159-68. doi:10.1523/JNEUROSCI.3792-08.2009
  21. Khalil Z, Liu T, Helme RD. Free radicals contribute to the reduction in peripheral vascular responses and the maintenance of thermal hyperalgesia in rats with chronic constriction injury. Pain. 1999;79:31-37. doi:10.1016/S0304-3959(98)00143-2
  22. Kim HK, Kim JH, Gao X, Zhou JL, Lee I, Chung K and Chung JM. Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain. Pain. 2006;122:53-62. doi:10.1016/j.pain.2006.01.013
  23. Sato E, Mokudai T, Niwano Y, Kohno M. Kinetic analysis of reactive oxygen species generated by the in vitro reconstituted NADPH oxidase and xanthine oxidase systems. J Biochem. 2011;150(2):173-81. doi:10.1093/jb/mvr051
  24. Hawkins BJ, Madesh M, Kirkpatrick CJ, Fisher AB. Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Biol Cell 2007; 18(6):2002-12. doi:10.1091/mbc.E06-09-0830
  25. Zhou X, Wen K, Yuan D, Ai L, He P. Calcium influxdependent differential actions of superoxide and hydrogen peroxide on microvessel permeability. Am J Physiol Heart Circ Physiol. 2009;296(4):H1096-107. doi:10.1152/ajpheart.01037.2008
  26. Son Y, Chun SW. Effects of hydrogen peroxide on neuronal excitability and synaptic transmission in rat substantia gelatinosa neurons. International J Oral Biol. 2007;32: 153-160.
  27. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 2009;11(6):1373-414. doi:10.1089/ars.2008.2331
  28. Bao L, Avshalumov MV, Rice ME. Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion. J Neurosci 2005;26;25(43):10029-40. doi:10.1523/JNEUROSCI.2652-05.2005
  29. Avshalumov MV, Chen BT, Koos T and Rice ME. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J Neurosci 2005;25:4222-4231. doi:10.1523/JNEUROSCI.4701-04.2005
  30. Takahashi A, Mikami M, Yang J. Hydrogen peroxide increases GABAergic mIPSC through presynaptic release of calcium from IP3receptor-sensitive stores in spinal cord substantia gelatinosa neurons. European J Neurosci 2007; 25:705-716. doi:10.1111/j.1460-9568.2007.05323.x
  31. Yowtak J, Lee KY, Kim HY, Wang J, Kim HK, Chung K, Chung JM. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain 2011;152:844-852. doi:10.1016/j.pain.2010.12.034
  32. Mailly F, Marin P, Israel M, Glowinski J, Premont J. Increase in external glutamate and NMDA receptor activation contribute to $H_2O_2$-induced neuronal apoptosis. J Neurochem 1999;73:1181-1188. doi:10.1046/j.1471-4159.1999.0731181.x
  33. Liaw WJ, Stephens RL, Binns BC, Chu Y, Sepkuty JP, Johns RA, Rothstein JD, Tao YX. Spinal glutamate uptake is critical for maintaining normal sensory transmissionin rat spinal cord. Pain 2005;115:60-70. doi:10.1016/j.pain.2005.02.006
  34. Melnick IV, Santos SF, Szokol K, Szucs P, Safronov BV. Ionic basis of tonic firing in spinal substantia gelatinosa neurons of rat. J Neurophysiol. 2004;91:646-655. doi:10.1152/jn.00883.2003
  35. Chang DJ, Lim CS, Lee SH, Kaang BK. Hydrogen peroxide modulates $K^+$ ion currents in cultured Aplysia sensory neurons. Brain Res. 2003;970:159-168. doi:10.1016/S0006-8993(03)02316-3
  36. Bychkov R, Pieper C, Ried M, Miloshena E, Bychkov FC, Luft L. Haller, hydrogen peroxide, potassium currents, and membrane potential in human endotherial cells. Circulation. 1999;99:1719-1725. doi: 10.1161/01.CIR.99.13.1719