DOI QR코드

DOI QR Code

Antibody-based Screening of Porphyromonas gingivalis Proteins Specifically Produced in Patients with Chronic Periodontitis

  • Kim, Hye-Jung (Department of Dental Education, School of Dentistry, Dental Research Institute, Chonnam National University) ;
  • Lee, Seok-Woo (Department of Dental Education, School of Dentistry, Dental Research Institute, Chonnam National University)
  • Received : 2018.09.27
  • Accepted : 2018.12.14
  • Published : 2018.12.31

Abstract

Porphyromonas gingivalis is among the major etiological pathogens of chronic periodontitis. The virulence mechanisms of P. gingivalis is yet to be identified as its activity is largely unknown in actual disease process. The purpose of this study is to identify antigens of P. gingivalis expressed only in patients with chronic periodontitis using a unique immunoscreening technique. Change Mediated Antigen Technology (CMAT), an antibody-based screening technique, was used to identify virulence-associated proteins of P. gingivalis that are expressed only during infection stage in patients having chronic periodontitis. Out of 13,000 recombinant clones screened, 22 tested positive for reproducible reactivity with rabbit hyperimmune anti-sera prepared against dental plaque samples acquired from periodontitis patients. The DNA sequences of these 18 genes were determined. CMAT-identified protein antigens of P. gingivalis included proteins involved in energy metabolism and biosynthesis, heme and iron binding, drug resistance, specific enzyme activities, and unknown functions. Further analysis of these genes could result in a novel insight into the virulence mechanisms of P. gingivalis.

Keywords

References

  1. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, et al. Bacterial diversity in human subgingival plaque. J Bacteriol 2001;183:3770-83. https://doi.org/10.1128/JB.183.12.3770-3783.2001
  2. Kroes I, Lepp PW, Relman DA. Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A 1999;96:14547-52. https://doi.org/10.1073/pnas.96.25.14547
  3. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005;43:5721-32. https://doi.org/10.1128/JCM.43.11.5721-5732.2005
  4. Marsh PD. Dental plaque as a microbial biofilm. Caries Res 2004;38:204-11. https://doi.org/10.1159/000077756
  5. Socransky SS, Haffajee AD. Evidence of bacterial etiology: a historical perspective. Periodontol 2000 1994;5:7-25. https://doi.org/10.1111/j.1600-0757.1994.tb00016.x
  6. Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005;38:72-122. https://doi.org/10.1111/j.1600-0757.2005.00113.x
  7. Forng RY, Champagne C, Simpson W, Genco CA. Environmental cues and gene expression in Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Oral Dis 2000;6:351-65.
  8. O'Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Antigens of bacteria associated with periodontitis. Periodontol 2000 2004;35:101-34. https://doi.org/10.1111/j.0906-6713.2004.003559.x
  9. Nakayama M, Ohara N. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases. Jpn Dent Sci Rev 2017;53:134-40. https://doi.org/10.1016/j.jdsr.2017.06.001
  10. Handfield M, Brady LJ, Progulske-Fox A, Hillman JD. IVIAT: a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol 2000;8:336-9. https://doi.org/10.1016/S0966-842X(00)01775-3
  11. Lee SW, Shet UK, Park SW, Lim HP, Yun KD, Kang SS, et al. Identification of Enterococcus faecalis antigens specifically expressed in vivo. Restor Dent Endod 2015;40:306-11. https://doi.org/10.5395/rde.2015.40.4.306
  12. Fouad AF, Barry J, Caimano M, Clawson M, Zhu Q, Carver R, et al. PCR-based identification of bacteria associated with endodontic infections. J Clin Microbiol 2002;40:3223-31. https://doi.org/10.1128/JCM.40.9.3223-3231.2002
  13. Yoo JY, Kim HC, Zhu W, Kim SM, Sabet M, Handfield M, et al. Identification of Tannerella forsythia antigens specifically expressed in patients with periodontal disease. FEMS Microbiol Lett 2007;275:344-52. https://doi.org/10.1111/j.1574-6968.2007.00906.x
  14. Rollins SM, Peppercorn A, Hang L, Hillman JD, Calderwood SB, Handfield M, et al. In vivo induced antigen technology (IVIAT). Cell Microbiol 2005;7:1-9.
  15. Cheng S, Clancy CJ, Checkley MA, Handfield M, Hillman JD, Progulske-Fox A, et al. Identification of Candida albicans genes induced during thrush offers insight into pathogenesis. Mol Microbiol 2003;48:1275-88. https://doi.org/10.1046/j.1365-2958.2003.03521.x
  16. Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, et al. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc Natl Acad Sci U S A 2003;100:8508-13. https://doi.org/10.1073/pnas.1431769100
  17. Deb DK, Dahiya P, Srivastava KK, Srivastava R, Srivastava BS. Selective identification of new therapeutic targets of Mycobacterium tuberculosis by IVIAT approach. Tuberculosis (Edinb) 2002;82:175-82. https://doi.org/10.1054/tube.2002.0337
  18. Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Shin DH, et al. Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 2003;71:5461-71. https://doi.org/10.1128/IAI.71.10.5461-5471.2003
  19. John M, Kudva IT, Griffin RW, Dodson AW, McManus B, Krastins B, et al. Use of in vivo-induced antigen technology for identification of Escherichia coli O157:H7 proteins expressed during human infection. Infect Immun 2005; 73:2665-79. https://doi.org/10.1128/IAI.73.5.2665-2679.2005
  20. Harris JB, Baresch-Bernal A, Rollins SM, Alam A, LaRocque RC, Bikowski M, et al. Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi. Infect Immun 2006; 74:5161-8. https://doi.org/10.1128/IAI.00488-06
  21. Salim KY, Cvitkovitch DG, Chang P, Bast DJ, Handfield M, Hillman JD, et al. Identification of group A Streptococcus antigenic determinants upregulated in vivo. Infect Immun 2005;73:6026-38. https://doi.org/10.1128/IAI.73.9.6026-6038.2005
  22. Cao SL, Progulske-Fox A, Hillman JD, Handfield M. In vivo induced antigenic determinants of Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 2004;237: 97-103. https://doi.org/10.1111/j.1574-6968.2004.tb09683.x
  23. Song YH, Kozarov EV, Walters SM, Cao SL, Handfield M, Hillman JD, et al. Genes of periodontopathogens expressed during human disease. Ann Periodontol 2002;7:38-42. https://doi.org/10.1902/annals.2002.7.1.38
  24. Gu H, Zhu H, Lu C. Use of in vivo-induced antigen technology (IVIAT) for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens. BMC Microbiol 2009;9:201. https://doi.org/10.1186/1471-2180-9-201
  25. Lee HR, Rhyu IC, Kim HD, Jun HK, Min BM, Lee SH, et al. In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum. Mol Oral Microbiol 2011; 26:164-72. https://doi.org/10.1111/j.2041-1014.2010.00594.x
  26. Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H. Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 2003;52:403-8. https://doi.org/10.1099/jmm.0.05132-0
  27. Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J. Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 2001;183:7094-101. https://doi.org/10.1128/JB.183.24.7094-7101.2001
  28. Widada J, Nojiri H, Kasuga K, Yoshida T, Habe H, Omori T. Quantification of the carbazole 1,9a-dioxygenase gene by real-time competitive PCR combined with co-extraction of internal standards. FEMS Microbiol Lett 2001;202:51-7. https://doi.org/10.1111/j.1574-6968.2001.tb10779.x
  29. Smalley JW, Olczak T. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment. Mol Oral Microbiol 2017;32:1-23. https://doi.org/10.1111/omi.12149
  30. Olczak T, Sroka A, Potempa J, Olczak M. Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization. Arch Microbiol 2008;189:197-210. https://doi.org/10.1007/s00203-007-0309-7
  31. McKee AS, McDermid AS, Baskerville A, Dowsett AB, Ellwood DC, Marsh PD. Effect of hemin on the physiology and virulence of Bacteroides gingivalis W50. Infect Immun 1986;52:349-55.
  32. Wu J, Lin X, Xie H. Regulation of hemin binding proteins by a novel transcriptional activator in Porphyromonas gingivalis. J Bacteriol 2009;191:115-22. https://doi.org/10.1128/JB.00841-08
  33. Ratnayake DB, Wai SN, Shi Y, Amako K, Nakayama H, Nakayama K. Ferritin from the obligate anaerobe Porphyromonas gingivalis: purification, gene cloning and mutant studies. Microbiology 2000;146 ( Pt 5):1119-27. https://doi.org/10.1099/00221287-146-5-1119
  34. Olczak T, Simpson W, Liu X, Genco CA. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 2005;29:119-44. https://doi.org/10.1016/j.femsre.2004.09.001
  35. Delmar JA, Su CC, Yu EW. Bacterial multidrug efflux transporters. Annu Rev Biophys 2014;43:93-117. https://doi.org/10.1146/annurev-biophys-051013-022855
  36. Saleem HG, Seers CA, Sabri AN, Reynolds EC. Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant. BMC Microbiol 2016;16:214. https://doi.org/10.1186/s12866-016-0833-1
  37. Kulik EM, Lenkeit K, Chenaux S, Meyer J. Antimicrobial susceptibility of periodontopathogenic bacteria. J Antimicrob Chemother 2008;61:1087-91. https://doi.org/10.1093/jac/dkn079
  38. Kurita-Ochiai T, Seto S, Suzuki N, Yamamoto M, Otsuka K, Abe K, et al. Butyric acid induces apoptosis in inflamed fibroblasts. J Dent Res 2008;87:51-5. https://doi.org/10.1177/154405910808700108