DOI QR코드

DOI QR Code

A Study on the Enhancement of Detection Performance of Space Situational Awareness Radar System

  • Received : 2018.11.26
  • Accepted : 2018.12.11
  • Published : 2018.12.15

Abstract

Radar sensors are used for space situational awareness (SSA) to determine collision risk and detect re-entry of space objects. The capability of SSA radar system includes radar sensitivity such as the detectable radar cross-section as a function of range and tracking capability to indicate tracking time and measurement errors. The time duration of the target staying in a range cell is short; therefore, the signal-to-noise ratio cannot be improved through the pulse integration method used in pulse-Doppler signal processing. In this study, a method of improving the signal-to-noise ratio during range migration is presented. The improved detection performance from signal processing gains realized in this study can be used as a basis for comprehensively designing an SSA radar system.

Keywords

References

  1. Bae YH, Jo JH, Yim HS, Park YS, Par SY, et al., Correlation between the "seeing FWHM" of satellite optical observation and meteorological data at the OWL-Net station, Mongolia, J. Astron. Space Sci. 33, 137-146 (2016). https://doi.org/10.5140/JASS.2016.33.2.137
  2. Carlson BD, Evans ED, Wilson SL, Search radar detection and track with the Hough transform. I. System concept, IEEE Trans. Aerosp. Electron. Syst. 30, 102-108 (1994). https://doi.org/10.1109/7.250410
  3. Choi EJ, Cho S, Park JH, Architecture design for the space situational awareness system in the preparedness plan for space hazards of republic of Korea, Proceedings of the 16th Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference, Maui, Hawaii, 15-18 Sep 2015a.
  4. Choi EJ, Cho S, Park JH, Architecture design for a Korean space situational awareness system, in 2015 Korean Space Science Society (KSSS) Fall Meeting, Gyeongju, Korea, 28-30 Oct 2015b.
  5. Choi EJ, Cho S, Lee DJ, Kim S, Jo JH, et al., A study on reentry predictions of uncontrolled space objects for space situational awareness, J. Astron. Space Sci. 34, 289- 302 (2017a). https://doi.org/10.5140/JASS.2017.34.4.289
  6. Choi EJ, Cho S, Jo JH, Park JH, Chung T, et al., Performance analysis of sensor systems for space situational awareness, J. Astron. Space Sci. 34, 303-313 (2017b). https://doi.org/10.5140/JASS.2017.34.4.303
  7. Choi J, Jo JH, Kim MJ, Roh DG, Park SY, et al., Determining the rotation periods of an inactive LEO satellite and the first Korean space debris on GEO, KOREASAT1, J. Astron. Space Sci. 33, 127-135 (2016). https://doi.org/10.5140/JASS.2016.33.2.127
  8. Eilers J, Anger S, Neff T, Radar based system for space situational awareness, J. Space Oper. Commun. 13, 1-13 (2016).
  9. Halte S, Space situational awareness phased array radar simulation, Proceedings of the 2012 International Symposium on Signals, Systems, and Electronics (ISSSE), Potsdam, Germany, 3-5 Oct 2012.
  10. Huang X, Zhang L, Li S, Zhao Y, Radar high speed small target detection based on keystone transform and linear canonical transform, Digit. Signal Process. 82, 203-215 (2018). https://doi.org/10.1016/j.dsp.2018.08.001
  11. Klinkrad H, Donath T, Schildknecht T, Investigations of the Feasibility of a European Space Surveillance System, Proceedings of the 7th US/Russian Space Surveillance Workshop, Monterey, CA , 29 Oct - 2 Nov 2007.
  12. Lee E, Park SY, Shin B, Cho S, Choi EJ, et al., Orbit determination of KOMPSAT-1 and Cryosat-2 satellite using Opticl Widefield patroL Network (OWL-Net) Data with Batch least squares filter, J. Astron. Space Sci. 34, 19-30 (2017). https://doi.org/10.5140/JASS.2017.34.1.19
  13. Lee J, Choi EJ, Moon HW, Park J, Cho S, et al., Design of L-band phased array radar system for space situational awareness, J. Korean Inst. Electromagn. Eng. Sci. 29, 214-224 (2018). https://doi.org/10.5515/KJKIEES.2018.29.3.214
  14. Moon HW, Choi EJ, Lee J, Yeum J, Kwon S, et al., A study on the effect of atmosphere on the space surveillance radar, J. Korean Inst. Electromagn. Eng. Sci. 29, 648-659 (2018). https://doi.org/10.5515/KJKIEES.2018.29.8.648
  15. Mukhopadhyay P, Chaudhuri B, A survey of Hough transform, Pattern Recognition 48, 993-1010 (2015). http://dx.doi.org/10.1016/j.patcog.2014.08.027
  16. Ono K, Tajima T, Mizutani A, Taromaru Y, Isobe S, et al., Development of the first Japanese space debris observation radar, Proceedings of the 3rd European Conference on space Debris, Darmstadt, Germany, 19-21 Mar 2001 .
  17. Park JH, Yim HS, Choi YJ, Jo JH, Moon HK, et al., OWL-Net: A global network of robotic telescopes for satellite observation, Adv. Space Res. 62, 152-163 (2018). https://doi.org/10.1016/j.asr.2018.04.008
  18. Park MR, Jo JH, Cho S, Choi J, Kim CH, et al., Minimum number of observation points for LEO satellite orbit estimation by OWL Network, J. Astron. Space Sci. 32, 357-366 (2015). https://doi.org/10.5140/JASS.2015.32.4.357
  19. Park SY, Keum KH, Lee SW, Jin H, Park YS, et al., Development of a data reduction algorithm for Optical Wide Field Patrol, J. Astron. Space Sci. 30, 193-206 (2013). https://doi.org/10.5140/JASS.2013.30.3.193
  20. Park SY, Choi J, Roh DG, Park M, Jo JH, et al., Development of a data reduction algorithm for Optical Wide Field Patrol (OWL) II: Improving measurement of lengths of detected streaks, J. Astron. Space Sci. 33, 221-227 (2016). http://dx.doi.org/10.5140/JASS.2016.33.3.221
  21. Richards MA, Notes on noncoherent integration gain, Technical Memorandum, No. 1 (2014).
  22. Skolnik, MI, Introduction to Radar Systems, 3rd edition (McGraw-Hill, Boston, 2001).
  23. Space-Track, Box score of the satellite situation report [Internet], cited 2018 Nov 22, available from: https://www.space-track.org/basicspacedata/query/class/boxscore/
  24. Xu J, Yu J, Peng YN, Xia XG, Radon-Fourier transform for radar target detection, I: Generalized Doppler filter bank, IEEE Trans. Aerosp. Electron. Syst. 47, 1186-1202 (2011). https://doi.org/10.1109/TAES.2011.5751251