• Title/Summary/Keyword: radar system

Search Result 1,586, Processing Time 0.021 seconds

Development of New Radar Beacon

  • Hayashi, Shogo;Sato, Tatsuo;Tanaka, Senji;Suzuki, Tsutomu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.291-296
    • /
    • 2006
  • The restrictions concerning the use of the radio waves have become severe, the marine radar with low spurious is being developed. Therefore, it is necessary to develop aids to navigation as a radar beacon can respond to new type of marine radar. Because the system of radar in the future is an indetermination, new radar beacon should correspond to old and new radar system during a transition period. New radar beacon that is also able to respond to pulse radar, pulse compression radar and FM-CW radar were considered in these years in Japan. The sign of the response of Morse code in a new system is generated by the delay synthesis system. Computer simulation and actual examination using trial circuit were curried out. A big possibility was set up in the development of the new radar beacon that was able to correspond to old and new radar system. These results and the state of new radar beacon is mentioned in this paper.

  • PDF

Radar system performance test and Ana lysisusing the Radar Simulative Test & Evaluation Laboratory (레이다 원전계/모의성능 실험실을 이용한 레이다 체계성능 시험 및 분석)

  • Kim, Woo-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1138-1143
    • /
    • 2011
  • One of the critical items in radar testing is the ability to evaluate the performance of radar systems under real operational environments. But it takes lots of time and cost to operate real targets and analyze the test results due to a large amount of data based on these complicated environments. In this paper, the Radar Simulative T&E Lab. is introduced, and the test and analysis results of the developing radar for predicting the radar system performance are described in the Radar Simulative T&E Lab. This laboratory could be used to test the far-field characteristics of antenna radiation pattern and to perform an effective radar system test and evaluation using a simulative target generator under a low cost repeating test situation.

The Study on Coordinate Transformation of the Tracking Radar in NARO Space Center (나로우주센터 추적레이더의 좌표 변환에 관한 연구)

  • Shin, Han-Seop;Choi, Jee-Hwan;Kim, Dae-Oh;Kim, Tae-Hyung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.116-121
    • /
    • 2011
  • The tracking radar systems in NARO space center are used in order to acquire the TSPI (Time, Space, and Position Information) data of the launch vehicle. The tracking radar produce the measurements of tracked targets in the radar-centered coordinate system. When the tracking radar is in the Cartesian/Polar tracking mode, the state vector data is sent in radar-centered Cartesian/Polar coordinate system to RCC. RCC also send the slaving data in Test Range coordinate system to the tracking radar. So, the tracking radars have to transform the slaving data in Test Range coordinate system into in radar-centered coordinate system. In this study, we described the coordinate transformation between radar-centered coordinate system and Test Range coordinated system.

Proof-of-Concept Research on Pseudo-Random Noise Radar Using Sequential Sampling Method (순차적 샘플링 방식을 이용한 가상 잡음 레이더 개념 증명)

  • Kim, Jihoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.546-554
    • /
    • 2015
  • Ultra-wideband(UWB) radar is widely used in many penetration radar applications, such as ground-penetrating radar and foliage-penetrating radar, because it has many advantages in detecting concealed objects. One type of UWB radar system is random noise radar, which many be robust to jamming environment. However conventional random noise radar requires high-speed analog-to-digital convertor(ADC) for matched filtering. In this thesis, a pseudo-random noise radar system that maintains anti-jamming characteristics but does not require high-speed ADC is researched. and The UWB system is implemented in a low frequency system, and its performance has been demonstrated by experiment, which proves the concept of the proposed pseudo-random noise radar system.

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

Quantitative Estimation of the Precipitation utilizing the Image Signal of Weather Radar

  • Choi, Jeongho;Lim, Sanghun;Han, Myoungsun;Kim, Hyunjung;Lee, Baekyu
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.245-256
    • /
    • 2018
  • This study estimated rainfall information more effectively by image signals through the information system of weather radar. Based on this, we suggest the way to estimate quantitative precipitation utilizing overlapped observation area of radars. We used the overlapped observation range of ground hyetometer observation network and radar observation network which are dense in our country. We chose the southern coast where precipitation entered from seaside is quite frequent and used Sungsan radar installed in Jeju island and Gudoksan radar installed in the southern coast area. We used the rainy season data generated in 2010 as the precipitation data. As a result, we found a reflectivity bias between two radar located in different area and developed the new quantitative precipitation estimation method using the bias. Estimated radar rainfall from this method showed the apt radar rainfall estimate than the other results from conventional method at overall rainfall field.

Study on the Optimal Deployment of the Passive Radar System for Detecting Small Unmanned Aerial Vehicles (소형 무인기 탐지를 위한 패시브 레이더망 최적 배치 연구)

  • Baek, Inseon;Lee, Taesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.443-452
    • /
    • 2016
  • Current low-altitude radar system often fails to detect small unmanned aerial vehicles (UAV) because of their small radar cross section (RCS) compared with larger targets. As a potential alternative, a passive bistatic radar system has been considered. We study an optimal deployment problem for the passive bistatic radar system. We model this problem as a covering problem, and develop an integer programming model. The objective of the model is to maximize coverage of a passive bistatic radar system. Our model takes into account factors specific to a bistatic radar system, including bistatic RCS and transmitter-receiver pair coverage. Considering bistatic RCS instead of constant RCS is important because the slight difference of RCS value for small UAVs could significantly influence the detection probability. The paired radar coverage is defined by using the concept of gradual coverage and cooperative coverage to represent a realistic environment.

Performance Analysis of Sensor Systems for Space Situational Awareness

  • Choi, Eun-Jung;Cho, Sungki;Jo, Jung Hyun;Park, Jang-Hyun;Chung, Taejin;Park, Jaewoo;Jeon, Hocheol;Yun, Ami;Lee, Yonghui
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.303-314
    • /
    • 2017
  • With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a $1-m^2$ radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.

Development of Radar HILS System and Verification Radar Performance Scenario-based (레이다 비행 모의 장치 개발 및 시험 시나리오 기반 레이다 성능 검증)

  • Yong-kil Kwak
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.574-579
    • /
    • 2023
  • The radar flight test has many restrictions on simulating various targets, clutter and jamming signal. Therefore, in this study, a radar HILS system that performs a radar operation simulation function according to an operation scenario was developed. Radar HILS simulates the radar mission environment through radar beam operation simulation, radar operation control, simulated signal generation, and flight attitude simulation.. HILS generates and modulates simulated target signals(single, multiple targets) containing radar mission environments(clutter, jamming etc.) based on flight scenarios, and transmits them to AESA radar over RF. And Scenario-based radar performance was verified by detecting simulated targets and confirming detection results.

Application and Analysis of 1D FRI (Finite Rate of Innovation) Super-resolution Technique in FMCW Radar (FMCW 레이더에서의 1D FRI (Finite Rate of Innovation) 초고해상도 기법 적용 및 분석)

  • Yoo, Kyungwoo;Kong, Seung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.31-39
    • /
    • 2014
  • Recently, as Intelligent Transportation System (ITS) and self-driving system become influential in the ground transportation system, automotive radar systems have been actively studied among the various radar systems to implement the vehicle collision detection system and distance measurement system between vehicles. Most of the automotive radars are Frequency Modulated Continuous Wave (FMCW) radar type which can calculate distance and velocity of target by estimating the frequency difference between the transmitted signal and received signal. Therefore, accurate frequency estimation is very important in the FMCW radar system. For this reason, to improve the measurement accuracy of the FMCW radar, Reverse Directional FRI (RD-FRI) Super-Resolution technique which has high frequency estimation accuracy is applied to the FMCW radar system. The feasibility of the proposed technique is evaluated with simulation results and compared with FFT and conventional Super-Resolution techniques. The simulation results show that the proposed technique estimates the frequency with high accuracy and the distance with centimeter accuracy.