DOI QR코드

DOI QR Code

MARS inverse analysis of soil and wall properties for braced excavations in clays

  • Zhang, Wengang (Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University) ;
  • Zhang, Runhong (School of Civil Engineering, Chongqing University) ;
  • Goh, Anthony. T.C. (School of Civil and Environmental Engineering, Nanyang Technological University)
  • Received : 2016.08.29
  • Accepted : 2018.10.12
  • Published : 2018.12.30

Abstract

A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Attoh-Okine, N.O., Cooger, K. and Mensah, S. (2009), "Multivariate adaptive regression spline (MARS) and hinged hyper planes (HHP) for doweled pavement performance modeling", Construct. Build. Mater., 23(9), 3020-3023. https://doi.org/10.1016/j.conbuildmat.2009.04.010
  2. Brinkgreve, R.J.B., Broere, W. and Watermanm, D. (2006), PLAXIS version 8.5 Manual, AA Balkema, Rotterdam, The Netherlands.
  3. Calvello, M. and Finno, R.J. (2004), "Selecting parameters to optimize in model calibration by inverse analysis", Comput. Geotech., 31(5), 411-425.
  4. Chiu, C.F., Yan, W.M. and Yuen, K.V. (2012), "Estimation of water retention curve of granular soils from particle size distribution-a Bayesian probabilistic approach", Can. Geotech. J., 49(9), 1024-1035. https://doi.org/10.1139/t2012-062
  5. Clough, G.W. and O'Rourke, T.D. (1990), "Construction induced movements of in situ walls", Proceedings of the Specialty Conference on Design and Performance of Earth Retaining Structures, Ithaca, New York, U.S.A., June.
  6. Fang, M.L. (1987), "A deep excavation in Taipei Basin", Proceedings of the 9th Southeast Asian Geotechnical Conference, Bangkok, Thailand, December.
  7. Fang, T.C., Tsai, Y.Y., Su, T.C., Tsung, P. and Seeley, P. (2004), "A case study on time-dependent displacement of diaphragm wall induced by creep of soft clay", Proceedings of the 5th Cross-Strait Geotechnics Seminars, Taipei, Taiwan, November.
  8. Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Stat., 19, 1-67. https://doi.org/10.1214/aos/1176347963
  9. Gioda, G. (1985), "Some remarks on back analysis and characterization problems in geomechanics", Proceedings of the 5th International Conference on Numerical Methods in Geomechanics, Nagoya, Japan, April.
  10. Goh, A.T.C., Wong, K.S., Teh, C.I. and Wen, D. (2003), "Pile response adjacent to braced excavation", J. Geotech. Geoenviron. Eng., 129(4), 383-386. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(383)
  11. Goh, A.T.C. and Zhang, W.G. (2014), "An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines", Eng. Geol., 170, 1-10. https://doi.org/10.1016/j.enggeo.2013.12.003
  12. Goh, A.T.C., Zhang, W.G., Zhang, Y.M., Xiao, Y. and Xiang, Y.Z. (2018), "Determination of EPB tunnel-related maximum surface settlement: A multivariate adaptive regression splines approach", Bull. Eng. Geol. Environ., 77(2), 489-500. https://doi.org/10.1007/s10064-016-0937-8
  13. Goh, A.T.C., Zhang, Y.M., Zhang, R.H., Zhang, W.G. and Xiao, Y. (2017), "Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression", Tunn. Undergr. Sp. Technol., 70, 148-154. https://doi.org/10.1016/j.tust.2017.07.013
  14. Hashash, Y., Levasseur, S., Osouli, A., Finno, R. and Malecot, Y. (2010), "Comparison of two inverse analysis techniques for learning deep excavation response", Comput. Geotech., 37(3), 323-333. https://doi.org/10.1016/j.compgeo.2009.11.005
  15. Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer.
  16. Jekabsons, G. (2010), "VariReg: A software tool for regression modelling using various modeling methods", Riga Technical University, .
  17. Ji, J., Zhang, C., Gui, Y., Lu, Q. and Kodikara, J. (2016), "New observations on the application of LS-SVM in slope system reliability analysis", J. Comput. Civ. Eng., 31(2), 06016002. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000620
  18. Juang, C.H., Luo, Z., Atamturktur, S. and Huang, H. (2013), "Bayesian updating of soil parameters for braced excavations using field observations", J. Geotech. Geoenviron. Eng., 139(3), 395-406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000782
  19. Koutsoftas, D.C., Frobenius, P., Wu, C.L., Meyersohn, D. and Kulesza, R. (2000), "Deformations during cut-and cover construction of MUNI metro turnback project", J. Geotech. Geoenviron. Eng., 126(4), 344-359. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(344)
  20. Kung, G.T.C., Hsiao, E.C.L. and Juang, C.H. (2007), "Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements", Can. Geotech. J., 44(6), 726-736. https://doi.org/10.1139/t07-014
  21. Lashkari, A. (2012), "Prediction of the shaft resistance of nondisplacement piles in sand", Int. J. Numer. Anal. Meth. Geomech., 37(8), 904-931. https://doi.org/10.1002/nag.1129
  22. Lecampion, B., Constantinescu, A. and Nguyen Minh, D. (2002), "Parameter identification for lined tunnels in viscoplastic medium", Int. J. Numer. Anal. Meth. Geomech., 26(12), 1191-1211. https://doi.org/10.1002/nag.241
  23. Levasseur, S., Malecot, Y., Boulon, M. and Flavigny, E. (2008), "Soil parameter identification using a genetic algorithm", Int. J. Numer. Anal. Meth. Geomech., 32(2), 189-213. https://doi.org/10.1002/nag.614
  24. Levasseur, S., Malecot, Y., Boulon, M. and Lavigny, E. (2010), "Statistical inverse analysis based on genetic algorithm and principal component analysis: Applications to excavation problems and pressuremeter tests", Int. J. Numer. Anal. Meth. Geomech., 34(5), 471-491. https://doi.org/10.1002/nag.813
  25. Li, W. (2001), "Braced excavation in old alluvium in Singapore", Ph.D. Thesis, Nanyang Technological University, Nanyang, Singapore.
  26. Lim, K.W., Wong, K.S., Orihara, K. and Ng, P.B. (2003), "Comparison of results of excavation analysis using WALLUP, SAGE CRISP, and EXCAV97", Proceedings of the Singapore Underground, Nanyang, Singapore, November.
  27. Miranda, T. (2007), "Geomechanical parameters evaluation in underground structures. Artificial intelligence, Bayesian probabilities and inverse methods", Ph.D. Thesis, University of Minho, Guimaraes, Portugal.
  28. Mirzahosseinia, M., Aghaeifarb, A., Alavic, A., Gandomic, A. and Seyednour, R. (2011), "Permanent deformation analysis of asphalt mixtures using soft computing techniques", Expert Syst. Appl., 38(5), 6081-6100. https://doi.org/10.1016/j.eswa.2010.11.002
  29. Moh, Z.C. and Song, T.F. (2013), "Performance of diaphragm walls in deep foundation excavations", Proceedings of the 1st International Conferences on Case Histories in Geotechnical Engineering, St. Louis, Missouri, U.S.A., May.
  30. Moreira, N., Miranda, T., Pinheiro, M., Fernandes, P., Dias, D., Costa, L. and Sena-Cruz, J. (2013), "Back analysis of geomechanical parameters in underground works using an Evolution Strategy algorithm", Tunn. Undergr. Sp. Technol., 33, 143-158. https://doi.org/10.1016/j.tust.2012.08.011
  31. Ou, C.Y., Hsieh, P.G. and Chiou, D.C. (1993), "Characteristics of ground surface settlement during excavation", Can. Geotech. J., 30(5), 758-767. https://doi.org/10.1139/t93-068
  32. Ou, C.Y. and Tang, Y. (1994), "Soil parameter determination for deep excavation analysis by optimization", J. Chin. Inst. Eng., 17(5), 671-688. https://doi.org/10.1080/02533839.1994.9677634
  33. Papon, A., Riou, Y., Dano, C. and Hicher, P.Y. (2011), "Single and multi-objective genetic algorithm optimization for identifying soil parameters", Int. J. Numer. Anal. Meth. Geomech., 36(5), 597-618. https://doi.org/10.1002/nag.1019
  34. Rechea, C., Levasseur, S. and Finno, R. (2008), "Inverse analysis techniques for parameter identification in simulation of excavation support systems", Comput. Geotech., 35(3), 331-345. https://doi.org/10.1016/j.compgeo.2007.08.008
  35. Samui, P. (2011), "Determination of ultimate capacity of driven piles in cohesionless soil: A multivariate adaptive regression spline approach", Int. J. Numer. Anal. Meth. Geomech., 36(11), 1434-1439. https://doi.org/10.1002/nag.1076
  36. Samui, P. and Karup, P. (2011), "Multivariate adaptive regression spline and least square support vector machine for prediction of undrained shear strength of clay". Int. J. Appl. Metaheur. Comput., 3(2), 33-42. https://doi.org/10.4018/jamc.2012040103
  37. Wang, Z.W., Ng, C.W.W. and Liu, G.B. (2005), "Characteristics of wall deflections and ground surface settlements in Shanghai", Can. Geotech. J., 42(5), 1243-1254. https://doi.org/10.1139/t05-056
  38. Xu, Z.H., Wang, W.D., Wang, J.H. and Shen, S.L. (2005), "Performance of deep excavation retaining wall in Shanghai soft deposit", Lowland Technol. Int., 7(2), 31-43.
  39. Yan, W.M., Yuen, K.V. and Yoon, G.L. (2009), "Bayesian probabilistic approach for the correlations of compressibility index for marine clays", J. Geotech. Geoenviron. Eng., 135(12), 1932-1940. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000157
  40. Zarnani, S., El-Emam, M. and Bathurst, R.J. (2011), "Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests", Geomech. Eng., 3(4), 291-321. https://doi.org/10.12989/gae.2011.3.4.291
  41. Zentar, R., Hicher, P. and Moulin, G. (2001), "Identification of soil parameters by inverse analysis", Comput. Geotech., 28(2), 129-144. https://doi.org/10.1016/S0266-352X(00)00020-3
  42. Zhang, C.S., Ji, J., Gui, Y.L., Kodikara, J., Yang, S.Q. and He, L. (2016), "Evaluation of soil-concrete interface shear strength based on LS-SVM", Geomech. Eng., 11(3), 361-372. https://doi.org/10.12989/gae.2016.11.3.361
  43. Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016
  44. Zhang, W.G. and Goh, A.T.C. (2014), "Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns", Geomech. Eng., 7(4), 431-458. https://doi.org/10.12989/gae.2014.7.4.431
  45. Zhang, W.G. and Goh, A.T.C. (2015), "Nonlinear modeling using multivariate adaptive regression splines", Comput. Concrete, 16, 569-585. https://doi.org/10.12989/cac.2015.16.4.569
  46. Zhang, W.G. and Goh, A.T.C. (2016a), "Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression", Geomech. Eng., 10(3), 269-284. https://doi.org/10.12989/gae.2016.10.3.269
  47. Zhang, W.G. and Goh, A.T.C. (2016b), "Multivariate adaptive regression splines and neural network models for prediction of pile drivability", Geosci. Front., 7(1), 45-52. https://doi.org/10.1016/j.gsf.2014.10.003
  48. Zhang, W.G. and Goh, A.T.C. (2018), "Reliability analysis of geotechnical infrastructures: Introduction", Geosci. Front.
  49. Zhang, W.G., Goh, A.T.C. and Xuan, F. (2015), "A simple prediction model for wall deflection caused by braced excavation in clays", Comput. Geotech., 63, 67-72. https://doi.org/10.1016/j.compgeo.2014.09.001
  50. Zhao, B.D., Zhang, L.L., Jeng, D.S., Wang, J.H. and Chen, J.J. (2015), "Inverse analysis of deep excavation using differential evolution algorithm", Int. J. Numer. Anal. Meth. Geomech., 39(2), 115-134. https://doi.org/10.1002/nag.2287

Cited by

  1. Evaluation of geological conditions and clogging of tunneling using machine learning vol.25, pp.1, 2018, https://doi.org/10.12989/gae.2021.25.1.059