Fig. 1. Overview of neural data visualization procedure
Fig. 2. fMRI experimental design
Fig. 3. Anatomical region of primary somatosensory cortex
Fig. 4. Visualization results using two different dimensionality reduction methods
Fig. 5. Performance comparison using residual variances
References
- Kim, Y, Cho, KH, "Big Data and Statistics", Journal of the Korean Data and Information Science Society, Vol. 24, No. 5, pp.959-974, 2013. https://doi.org/10.7465/jkdi.2013.24.5.959
- Park, H-J, Gwon, Y-H, An, Y-M, "Big Data and Its Refining Technology", Korean Society of Computer Information Review, Vol. 21, No. 1, pp.1-8, 2013.
- Kim, ST, "3 Elements for the Successful Big Data Usage: Resources, Technology, Man Power", IT & Future Strategy, Vol. 3. 2012.
- Pereira, F. and Botvinick, M., "Machine learning classifiers and fMRI: a tutorial overview." Neuroimage, Vol.45, No.1, pp.S199-S209, 2009. https://doi.org/10.1016/j.neuroimage.2008.11.007
- Lee, J-H, Je, M-G, Jo, M-J, Son, H-S, "Trends of Big Data Use in Medical Field", Information and Communications Magazine, Vol. 32, No. 1, pp.63-75, 2014.
- Choe, G-S, Ham Y-G, Kim S-H, "Visualization of Big Data", Korean Society of Computer Information Review, Vol. 21, No. 1, pp.33-43, 2013.
- Pearson, K., "On Lines and Planes of Closest Fit to Systems of Points in Space." Philosophical Magazine, Vol.2, No.11, pp.559-572, 1901.
- Bronstein AM, Bronstein MM, Kimmel R, "Generalized multidimensional scaling: a framework for isometry-invar iant partial surface matching." Proc. Natl. Acad. Sci. U.S.A., Vol.103, No.5, pp1168-1172, 2006. https://doi.org/10.1073/pnas.0508601103
- Tenenbaum, J.B., De Silva, V. and Langford, J.C., "A global geometric framework for nonlinear dimensionality reduction." Science, Vol.290, No.5500, pp.2319-2323, 2000. https://doi.org/10.1126/science.290.5500.2319
- Gorban, A. N., Kégl, B., Wunsch, D. C., and Zinovyev, A. Y., Principal manifolds for data visualization and dimension reduction, Springer, Berlin-Heidelberg, 2008.
- Bellman. R. Adaptive control processes: A guided tour, Princeton University Press, Princeton, 1961.
- Hastie, T., Tibshirani, R. and Friedman, J., Overview of supervised learning. In The elements of statistical learning, Springer, New York, 2009.
- Hu, J., Tian, J. and Yang, L., "Functional feature embedded space mapping of fMRI data." In Engineering in Medicine and Biology Society (EMBS), pp.1014-1017, 2006.
- Martuzzi, R., Zwaag, W., Farthouat, J., Gruetter, R. and Blanke, O., "Human finger somatotopy in areas 3b, 1, and 2: a 7T fMRI study using a natural stimulus." Human brain mapping, Vol.35, No.1, pp.213-226, 2014. https://doi.org/10.1002/hbm.22172
- Hannachi, A. and Turner, A.G., "Isomap nonlinear dimensionality reduction and bimodality of Asian monsoon convection." Geophysical Research Letters, Vol.40, No.8, pp.1653-1658, 2013. https://doi.org/10.1002/grl.50351
- Zhang, C., Wang, J., Zhao, N. and Zhang, D., "Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction." Pattern Recognition, Vol.37, No.2, pp.325-336, 2004. https://doi.org/10.1016/j.patcog.2003.07.005
- Yang, J., Wang, H., Ding, H., An, N. and Alterovitz, G., "Nonlinear dimensionality reduction methods for synthetic biology biobricks' visualization." BMC bioinformatics, Vol.18, No.47, pp.1-10, 2017.