DOI QR코드

DOI QR Code

Acaricidal and antimicrobial toxicities of Cyanachum paniculatum root oils and these components against Haemaphysalis longicornis and human intestinal bacteria

산해박 뿌리에서 추출한 정유 및 구성성분의 인간 장내미생물에 대한 항균활성 및 작은소피참진드기에 대한 살비활성

  • Lee, Myung-Ji (Department of Bioenvironmental Chemistry, Chonbuk National University) ;
  • Kim, Hui-Ju (Department of Bioenvironmental Chemistry, Chonbuk National University) ;
  • Jeong, Ah-Hyeon (Department of Bioenvironmental Chemistry, Chonbuk National University) ;
  • Lee, Hoi-Seon (Department of Bioenvironmental Chemistry, Chonbuk National University)
  • Received : 2018.11.28
  • Accepted : 2018.11.30
  • Published : 2018.12.31

Abstract

Anaerobic growth-inhibiting and acaricidal activities of 2'-hydroxy-5'-methoxyacetophenone derived from Cyanachum paniculatum oil and its derivatives against five intestinal bacteria (Bifidobacterium bifidum, B. longum, Clostridium pefringens, Escherichia coli and Lactobacillus casei) and Haemaphysalis longicornis were examined. In the packet test against the larvae of H. longicornis, none of the C. paniculatum oil exhibited acaricidal activity, while the C. paniculatum oil showed only antimicrobial activity against five intestinal bacteria in the disc diffusion method. Based on the inhibition zones and MIC values, 2',4'-dimethoxyacetophenone, 2',5'-dimethoxyacetophenone, 2'-hydroxy-4'-methoxyacetophenone, 2'-hydroxy-5'-methoxyacetophenone, 2'-methoxyacetophenone, and 4'-methoxyacetophenone, containing a methyl group on the acetophenone skeleton, possessed growthinhibiting activities against C. perfringens and E. coli. However, acetophenone, 2'-hydroxyacetophenone, 4'-hydroxyacetophenone, 2',4'-hydroxyacetophenone and 2',5'-hydroxyacetophenone, which contained a hydroxyl group on the acetophenone skeleton, had no growth-inhibiting activity against intestinal bacteria. These results indicated that 2'-hydroxy-5'-methoxyacetophenone and its derivatives could potentially be developed as natural antimicrobial agents to specific control of C. perfringens and E. coli.

산해박 뿌리 정유 추출물에 대한 장내 미생물 5종(Bifidobacterium bifidum, B. longum, C. perfringens, E. coli 및 L. casei)의 항균활성 및 작은소피참진드기(Haemaphysalis longicornis)의 살비활성을 검정하였다. 산해박 정유는 20.0 mg/disc에서 유해균 2종(C. perfringens 및 E. coli)에 대해 항균활성을 확인하였으나, 작은소피참진드기에는 살비활성을 나타내지 않았다. GC-MS 분석을 통해 얻어진 구성성분 중에 2'-hydroxy-5'-methoxyacetophenone이 유해균 2종에 대해서 10.0 mg/disc에서 각각 12.1 및 12.0 mm의 inhibition zone이 나타난 것을 확인하였다. 이와 같은 결과로 인하여 2'-hydroxy-5'-methoxyacetophenone 유도 화합물들의 구조에 따른 항균활성을 검정하고자 acetophenone 계열 유도체 10종(acetophenone, 2'-hydroxyacetophenone, 4'-hydroxyacetophenone, 2'-methoxyacetophenone, 4'-methoxyacetophenone, 2',4'-dihydroxyacetophenone, 2',5'-dihydroxyacetophenone, 2',4'-dimethoxyacetophenone, 2',5'-dimethoxyacetophenone 및 2'-hydroxy-4'-methoxyacetophenone)과 비교 실험한 결과, methyl group이 포함된 acetophenone 유도화합물에서는 유해균 2종에 대해 항균활성을 나타내었으며, 장내유익균에 대해서는 영향을 미치지 않았다. 그러나 hydroxyl group이 포함된 acetophenone 유도화합물에서는 장내 미생물에 대해 항균 활성이 전혀 나타내지 않았다. 이상의 결과를 통해 산해박 정유와 구성성분 2'-hydroxy-5'-methoxyacetophenone 및 그 유도체는 천연 장내 세균총 개선제로서의 가능성을 제시하였다.

Keywords

References

  1. Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70: 443-459 https://doi.org/10.1111/j.1365-2672.1991.tb02739.x
  2. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Ann Rev Microbial 31: 107-133 https://doi.org/10.1146/annurev.mi.31.100177.000543
  3. Lupp C, Finlay BB (2005) Intestinal microbiota. Curr Biol 15: 235-236 https://doi.org/10.1016/j.cub.2005.03.032
  4. Michael B, Thomas C (2007) Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nur 137: 751S-755S
  5. Choi CS, Chung JB, Chung SI, Yang YT (1984) Antibacterial activity of Lactobacillus casei isolated from a fermented milk against pathogenic enteric bacteria. J Korea Soc Micribiol 19(1): 41-47
  6. Kim JD, Kim MY, Seo HJ, Kim BJ, Kim DH, Kim EO, Chung HY, Kong JY (2002) Combination of natural products removing ROS for growth promoting effects of the useful Enterobacteria, Lacobacillus. sp. Korean J Microbiol Biotech 30:270-281
  7. Lee HS, Ahn YJ (1998) Growth-Inhibiting Effects of Cinnamomum cassia Bark-Derived Materials on Human Intestinal Bacteria. J Agric Food Chem 46(1): 8-12 https://doi.org/10.1021/jf970548y
  8. Lee WK, Lee SM, Bae HS, Baek YJ (1999) Effect of Bifidobacterium longum HY8001 administration on human fecal bacterial enzymes and microflora. Kor J Appl Microbiol Biotechnol 27(4): 267-272
  9. Petersen A, Andersen JS, Kaewmak T, Somsiri T, Dalsgaard A (2002) Impact of integrated fish farming on antimicrobial resistance in a pond environment. Appl Environ Microbiol 68: 6036-6042 https://doi.org/10.1128/AEM.68.12.6036-6042.2002
  10. Menne B, Ebi KL (2006) Climate change and adaptation strategies for human health. WHO, Europe
  11. Kim KH, Oh MD (2014) Severe fever with thrombocytopenia syndrome. Korean J Med 86: 271-276 https://doi.org/10.3904/kjm.2014.86.3.271
  12. Lee DK (2017) Ecological characteristics and current status of infectious disease vector in South Korea. J Korean Med Assoc 60(6): 458-467 https://doi.org/10.5124/jkma.2017.60.6.458
  13. Yang JY, Kim MG, Park JH, Hong ST, Lee HS (2014) Evaluation of benzaldehyde derivatives from Morinda officinalis as anti-mite agents with dual function as acaricide and mite indicator. Sci Rep 4: 7149
  14. Song BG, Lee WG, Ju YR (2017) Geographical distribution of Ixodid ticks in the Republic of Korea, 2015. Public Health Wkly Rep 10:239-245
  15. Sanyacharernkul S, Nantapap S, Sangrueng K, Nuntasaen N, Pompimon W, Meepowpan P (2016) Antifungal of modified neolignans from Mitrephora wangii Hu. Appl Biol Chem 59(3): 385-389 https://doi.org/10.1007/s13765-016-0178-3
  16. Lee MJ, Lee SE, Kang MS, Park B, Lee SG, Lee HS (2018) Acaricidal and insecticidal properties of Coriandrum sativum oils and their major constituents extracted by three different methods against stored product pests. Appl. Biol. Chem. 61(5): 481-488 https://doi.org/10.1007/s13765-018-0379-z
  17. Dou J, Li P, Bi ZM, Zhou JL (2007) New C21 steroidal glycoside from Cynanchum paniculatum. Chinese Chemical Lett 18: 300-302 https://doi.org/10.1016/j.cclet.2007.01.013
  18. Sun Y, Liu Z, Wang J, Tian W, Zhou H, Zhu L, Zhang C (2008) Supercritical fluid extraction of paeonol from Cynanchum paniculatum (Bge.) Kitag. and subsequent isolation by high-speed counter-current chromatography coupled with high-performance liquid chromatographyphotodiode array detector. Sep Purif Technol 64: 221-226 https://doi.org/10.1016/j.seppur.2008.10.007
  19. Kim MG, Yang JY, Lee HS (2013) Acaricidal potentials of active properties isolated from Cynanchum paniculatum and acaricidal changes by introducing functional radicals. J Agric Food Chem 61: 7568-7573 https://doi.org/10.1021/jf402330p
  20. Lim MY, Jeon JH, Jeong EY, Lee CH, Lee HS (2007) Antimicrobial activity of 5-hydroxy-1,4-naphthoquinone isolated from Caesalpinia sappan toward intestinal bacteria. Food chemistry 100(3): 1254-1258 https://doi.org/10.1016/j.foodchem.2005.12.009
  21. Mann CM, Markham JL (1998) A new method for determining the minimum inhibitory concentration of essential oils. J Appl Microbiol 84: 538-554 https://doi.org/10.1046/j.1365-2672.1998.00379.x
  22. Yamaguti N, Tipton VJ, Keegan HI, Toshioka S (1971) Ticks of Japan, Korea and the Ryukyu Islands. Brigham Young Univ Sci Bull 15:1-226 https://doi.org/10.5962/bhl.part.25691
  23. Stone BF, Haydock KP (1962) A method for measuring the acaricidesusceptibility of the cattle tick Boophilus microplus (Can.). Bull Entomol Res 53(3): 563-578 https://doi.org/10.1017/S000748530004832X
  24. Hsieh CL, Cheng CY, Tsai TH, Lin IH, Chang SY, Lin JG, Lao CJ, Tang NY (2006) Paeonol reduced cerebral infarction involving the superoxide anion and mocroglia activation in ischemia-reperfusion injured rats. J Ethnopharmacol 106: 208-215 https://doi.org/10.1016/j.jep.2005.12.027
  25. Lee SK, Nam KA, Heo YH (2003) Cytotoxic activity and G2/M cell cycle arrest mediated by antofine, A phenanthroindolizidine alkaloid isolated from Cynanchum paniculatum. Planta Med 69: 21-25 https://doi.org/10.1055/s-2003-37021
  26. Lau CH, Chan CM, Chan YW, Lau KM, Lau TW, Lam FC, Law WT, Che CT, Leung P C, Fung KP, Ho YY, Lau CBS (2007) Pharmacological investigations of the anti-diabetic effect of Cortex Mountan and its active component paeonol. Phytomedicine 14: 778-784 https://doi.org/10.1016/j.phymed.2007.01.007
  27. Jeong EY, Jeon JH, Kim HW, Kim MG, Lee HS (2009) Antimicrobial activity of leptospermone and its derivatives against human intestinal bacteria. Food chemistry 115(4): 1401-1404 https://doi.org/10.1016/j.foodchem.2009.01.086
  28. Yang JY, Lee HW, Lee HS (2015) Growth inhibitory activities of myrtanol and structural analogues from Thymus tosevii against intestinal bacteria. Food Sci Biotechnol 24(1): 169-174 https://doi.org/10.1007/s10068-015-0023-1
  29. Jeong EY, Lee MJ, Kang MS, Lee HS (2018) Antimicrobial agents of 4-methoxysalicylaldehyde isolated from Periploca sepium oil against foodborne bacteria: structure-activity relationship. Appl Biol Chem 61(4): 397-402
  30. Iwasa K, Nanba H, Lee DU, Kang SL (1998) Structure-activity relationships of protoberberines having antimicrobial activity. Planta Med 64: 748-751 https://doi.org/10.1055/s-2006-957572
  31. Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46: 412-429 https://doi.org/10.1016/j.foodcont.2014.05.047