DOI QR코드

DOI QR Code

Chlorella protothecoides의 밀킹 전후 연속 배양 시스템을 통한 유용물질 분석

Analysis of High-Value Materials through Continuous Cultivation System from Pre-and Post-Milking of Chlorella protothecoides

  • 투고 : 2018.06.22
  • 심사 : 2018.12.17
  • 발행 : 2018.12.31

초록

Chlorella are source of valuable compounds as lipids, proteins, carbohydrates, bioactive compounds. To continuous obtain the high-value materials of Chlorella protothecoides, we performed continuous cultivation after applying milking techniques to C. protothecoides grown with culture for 7 days in optical panel bioreactor (OPBR) system. Fatty acid and lutein in extracts from pre- and post-milking of C. protothecoides were analyzed using gas chromatography and high performance liquid chromatography, respectively. C. protothecoides were rich in unsaturated fatty acids with a high content of oleic acid(C18:1), which is suitable as a biofuel feedstock. The fatty acid content in pre- and post-milking of C. protothecoides was decreased from 126.424mg/g d.w. to 119.341mg/g d.w, and the lutein content decreased from 0.258mg/g d.w. to 0.178mg/g d.w. The results of this study demonstrate the feasibility of milking C. protothecoides for production of lipids for biofuels production. It was confirmed that microalgae can continuously obtain lutein present in a trace amount through a continuous culture from milking.

키워드

참고문헌

  1. Bone, R. A., Landrum, J. T. and Tarsis, S. L. 1985. Preliminary identification of the human macular pigment. Vision Res. 25, 1521-1535.
  2. Burdge, G. 2006. Metabolism of $\alpha$-linolenic acid in humans. Prostaglandins Leukot. Essent. Fatty acids. 75, 161-168. https://doi.org/10.1016/j.plefa.2006.05.013
  3. Canter, C. E., Blowers, P., Handler, R. M. and Shonnard, D. R. 2015. Implications of widespread algal biofuels production on macronutrient fertilizer supplies: Nutrient demand and evaluation of potential Alternate Nutrient Sources. Appl. Energy. 143(1), 71-80. https://doi.org/10.1016/j.apenergy.2014.12.065
  4. Chojnacka, K. and Marquez-Rocha, F. J. 2004. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Bio-Technol. 3, 21-34.
  5. Cordero, B. F., Obraztsova, I., Couso, I., Leon, R. Vargas, M. A. and Rodriguez, H. 2011. Enhancement of lutein production in Chlorella sorokiniana by improvement of culture conditions and random mutagenesis. Marine Drugs. 9, 1607-1624. https://doi.org/10.3390/md9091607
  6. Fakhry, E. M. and Maghraby, D. M. 2013. Fatty acids composition and biodiesel characterization of Dunaliella salina. J. Water Resour. Protect. 894-899.
  7. Farooq, W., Lee, Y. C., Ryu, B. G., Kim, B. H., Kim, H. S., Choi, Y. E. and Yang, J. W. 2013. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour. Technol. 132, 230-238. https://doi.org/10.1016/j.biortech.2013.01.034
  8. Gale, C. R., Hall, N. F., Phillips, D. I. and Martyn, C. N. 2001. Plasma antioxidant vitamins and carotenoids and age-related cataract. Ophthalmology 108, 1992-1998. https://doi.org/10.1016/S0161-6420(01)00833-8
  9. Gao, Y. X., Nagy, B., Liu X, Simandi., B. and Wang, Q. 2009. Supercritical $CO_2$ extraction of lutein esters from marigold (Tagetes erecta L.) enhanced by ultrasound. J. Supercrit. Fluids 49, 345-350. https://doi.org/10.1016/j.supflu.2009.02.006
  10. Garces, R. and Mancha, M. 1993. One-step lipid extraction and fatty acid methylester preparation from fresh plant tissues. Anal. Biochem. 211(1), 139-143. https://doi.org/10.1006/abio.1993.1244
  11. Gong, Y. M. and Jiang, M. L. 2011. Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol. Lett. 33, 1269-1284. https://doi.org/10.1007/s10529-011-0574-z
  12. Gonzalez, S., Astner, S., An, W., Goukassian, D. and Pathak, M. A. 2003. Dietary lutein/zeaxanthin decreases ultraviolet B-induced epidermal hyperproliferation and acute inflammation in hairless mice. J. Invest Dermatol. 121, 399-405. https://doi.org/10.1046/j.1523-1747.2003.12355.x
  13. Granado, F., Olmedilla, B. and Blanco, I. 2003. Nutritional and clinical relevance of lutein in human health. Brit. J. Nutr. 90, 487-502 https://doi.org/10.1079/BJN2003927
  14. Granado, F., Olmedilla, B., Blanco, I. and Rojas-Hidalgo, E. 1992. Carotenoid composition in raw and cooked Spanish vegetable. J. Agr. Food Chem. 40, 2135-2140. https://doi.org/10.1021/jf00023a019
  15. Graziani, G., Schiavo, S., Nicolai, M. A., Buono, S., Fogliano, V., Pinto, G. and Pollio, A. 2013. Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food Funct. 4, 144-152. https://doi.org/10.1039/C2FO30198A
  16. Guedes, A. C., Amaro, H. M. and Malcata, F. X. 2011. Microalgae as sources of carotenoids. Mar. Drugs. 9, 625-644. https://doi.org/10.3390/md9040625
  17. Gurr, M. I., Harwood, J. L. and Frayn, K. N. 2002. Lipid Biochemistry 5 th (eds). Blackwell Science Oxford.
  18. Hejazi, M. A. and Wijffels, R. H. 2004. Milking of microalgae. Trends Biotechnol. 22, 189-194. https://doi.org/10.1016/j.tibtech.2004.02.009
  19. Hou, C. T. 2005. Production of value-added industrial products from vegetable oils, In Handbook of Industrial Biocatalysis, C. T. Hou (Eds), CRC Press, Boca Raton. pp 7-1.
  20. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 54, 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  21. Huerlimann, R., de Nys, R. and Heimann, K. 2010. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol. Bioeng. 107(2), 245-257. https://doi.org/10.1002/bit.22809
  22. Jeong, Y. J., Kim, S. H., Min H. G. and Kim S. C. 2018. The content analysis of amino acids including GABA of Chlorella protothecoides under mixotrophic culture. J. Mar. Biosci. Biotechnol. 10(1), 18-25. https://doi.org/10.15433/KSMB.201810.1.018
  23. Kamal-Eldin, A. and Andersson, R. 1997. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J. Am. Oil Chem. Soc. 74, 375-380. https://doi.org/10.1007/s11746-997-0093-1
  24. Li, H. B., Jiang, Y. and Chen, F. 2002. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. J. Agric. Food Chem. 50, 1070-1072. https://doi.org/10.1021/jf010220b
  25. Liang, Y., Sarkany, N. and Cui, Y. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31, 1043-1049. https://doi.org/10.1007/s10529-009-9975-7
  26. Mares-Perlman, J. A., Millen, A. E. and Ficek, T. L., Hankison, S. E. 2002. The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J. Nutr. 132, 518S-524S. https://doi.org/10.1093/jn/132.3.518S
  27. Mata, T. M., Martins, A. A. and Caetano, N. S. 2010. Microalgae for biodiesel production and other applications, Renew. Sust. Energ. Rev. 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  28. Pittman, J. K., Dean, A. P. and Osundeko, O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102(1), 17-25. https://doi.org/10.1016/j.biortech.2010.06.035
  29. Ramos, M. J., Fernandez, C. M., Casas, A., Rodriguez, L. and Perez, A. 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100, 261-268. https://doi.org/10.1016/j.biortech.2008.06.039
  30. Sanchez, J. F., Fernandez, J. M., Acien, F. G., Rueda, A. and Perez-Parra, J. 2008. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 43, 398-405. https://doi.org/10.1016/j.procbio.2008.01.004
  31. Schenk. P. M., Thomas-Hall, S. R., Stephens, E., Marx, U., Mussgnug, J. and Posten, C. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res. 1, 20-43. https://doi.org/10.1007/s12155-008-9008-8
  32. Semba, R. D. and Dagnelie, G. 2003. Are lutein and zeaxanthin conditionally essential nutrients for eye health. Med. Hypotheses. 61, 465-472. https://doi.org/10.1016/S0306-9877(03)00198-1
  33. Shi, X., Wu, Z. and Chen, F. 2006. Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Mol. Nutr. Food Res. 50, 763-768. https://doi.org/10.1002/mnfr.200600037
  34. Shi, X., Zhang, X. and Chen, F. 2000. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb. Technol. 27, 312-318. https://doi.org/10.1016/S0141-0229(00)00208-8
  35. Shi, X. M., Jiang, Y. and Chen, F. 2002. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Prog. 18, 723-727. https://doi.org/10.1021/bp0101987
  36. Simopoulos, A. P. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54(3), 438-463. https://doi.org/10.1093/ajcn/54.3.438
  37. Spector, A. A. 1999. Essentiality of fatty acids. Lipids. 34, S1-S3. https://doi.org/10.1007/BF02562220
  38. Tsao, R., Yang, R., Young, J. C., Zhu, H. and Manolis, T. 2004. Separation of geometric isomers of native lutein esters in marigold (Taget Eserecta L.) by high-performance liquid chromatography mass spectrometry. J. Chromatogr. A. 1045, 65-70. https://doi.org/10.1016/j.chroma.2004.06.020
  39. van Niekerk, P. J. and Burger, A. E. C. 1985. The estimation of the composition of edible oil mixtures. J. Am. Oil Chem. Soc. 62, 531-538. https://doi.org/10.1007/BF02542327
  40. Wang, C., Kim, J. H. and Kim, S. W. 2014. Synthetic biology and metabolic engineering for marine carotenoids : new opportunities and future prospects. Mar. Drugs. 12, 4810-4832. https://doi.org/10.3390/md12094810