DOI QR코드

DOI QR Code

Recovery of Tin with High Purity for Dental Materials from Waste Tin oxide by Reduction and Electro Refining

폐주석산화물로부터 환원공정 및 전해정련을 통한 치과용 고순도 주석 회수

  • Jung, Hyun-Chol (Department of Bio-Nano System Engineering, Chonbuk National University) ;
  • Kim, Sang-Yeol (Department of Materials Science & Engineering, Chungnam National University) ;
  • Lee, Min-Ho (Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience and School of Dentistry (BK21 Plus Program), Chonbuk National University)
  • 정현철 (전북대학교 바이오나노시스템 공학과) ;
  • 김상열 (충남대학교 신소재공학과) ;
  • 이민호 (전북대학교 치의학전문대학원 치과생채재료학교실, 생체흡수성소재연구소 및 구강생체과학연구소(BK21 Plus사업))
  • Received : 2018.10.26
  • Accepted : 2018.11.23
  • Published : 2018.12.28

Abstract

In this study, using electro-refining process and methane gas reduction, we performed studying the recovery of tin with high purity from waste tin oxide had used as a electrode rod of ceramic furnace which occurred during glass production process. We recovered the crude tin of 99% purity from a methane gas reduction process and controlled a little amount of impurities. When the electrolytic refining condition was a current density of $60A/dm^2$ and the sulfuric acid concentration of 0.75 mol, 96.8% of recovered tin (99.979% of purity) were recovered during the electrolytic refining. We confirmed that toxic impurities such as Pb, Sb included in electrode rod. could be controlled.

유리생산공정에서 발생하는 요업로 전극봉인 폐주석 산화물로부터 가스환원공정과 전해정련을 통하여 고순도 주석을 회수하기 위한 연구를 수행하였다. 메탄가스 환원공정을 통해 99% 순도의 조주석을 회수하고, 불순물을 미량 제어하였다. 주석의 전해정련시 전류밀도가 $60A/dm^2$이고 전해액의 황산농도가 0.75 mol일 때 99.979%의 고순도 주석이 96.8% 회수되었다. 그리고 전극봉에 포함된 Pb, Sb 등의 독성 불순물 제어가 가능함을 확인하였다.

Keywords

RSOCB3_2018_v27n6_38_f0001.png 이미지

Fig. 1. Experimental flow for the recovery of high purity tin from waste tin oxide.

RSOCB3_2018_v27n6_38_f0002.png 이미지

Fig. 2. Sample of Tin Oxide.

RSOCB3_2018_v27n6_38_f0003.png 이미지

Fig. 3. The crude Tin obtained by gas reduction of waste tinoxide.

RSOCB3_2018_v27n6_38_f0004.png 이미지

Fig. 4. Impurity of electro-refined tin with current density(A/m2).

RSOCB3_2018_v27n6_38_f0005.png 이미지

Fig. 5. Pb purity of electro refined of tin with sulfuric acid concentration.

RSOCB3_2018_v27n6_38_f0006.png 이미지

Fig. 6. Sb purity of electro refined of tin by current density and sulfuric acid concentration.

Table 1. The components of waste Tin oxide

RSOCB3_2018_v27n6_38_t0001.png 이미지

Table 2. The condition of electro refining of Tin

RSOCB3_2018_v27n6_38_t0002.png 이미지

Table 3. The component of refined crude Tin

RSOCB3_2018_v27n6_38_t0003.png 이미지

Table 4. Amounts of Tin reduction and purity of electrolytic Tin

RSOCB3_2018_v27n6_38_t0004.png 이미지

Table 5. The Electrochemical series of elements

RSOCB3_2018_v27n6_38_t0005.png 이미지

Table 6. The purity of electrolytic Tin

RSOCB3_2018_v27n6_38_t0006.png 이미지

References

  1. Heloisa A Acciari, Antonio C Guastaldi, Christopher M. A Brett, 2004 : Corrosion of dental amalgams: electrochemical study of Ag-Hg, Ag-Sn and Sn-Hg phases, Electrochimica Acta, 46(24), pp.3887-3893. https://doi.org/10.1016/S0013-4686(01)00676-4
  2. Chao-yong Zhao, Fu-sheng Pan, and Hu-cheng Pan, 2016 : The effect of multiple precipitate types and texture on yield asymmetry in Mg-Sn-Zn(-Al-Na-Ca) alloys, Acta Materialia, 158, pp.1-12.
  3. L. C. Tsao, 2015 : Effect of Sn addition on the corrosion behavior of Ti-7Cu-Sn cast alloys for biomedical applications, Materials Science and Engineering: C, 46, pp.246-252. https://doi.org/10.1016/j.msec.2014.10.037
  4. V. P. Krasin, and S. I. Soyustova, 2018 : Quantitative evaluation of thermodynamic parameters of Li-Sn alloys related to their use in fusion reactor, Journal of Nuclear Materials, 505, pp.193-199. https://doi.org/10.1016/j.jnucmat.2018.04.008
  5. S. K. Jha, 2016 : Microstructural and textural evolution during hot deformation of dilute Zr-Sn alloy, Journal of Nuclear Materials, 482, pp.12-18. https://doi.org/10.1016/j.jnucmat.2016.09.028
  6. J. P. S. Loureiro, et al., 2017 : Deuterium retention in tin (Sn) and lithium-tin (Li-Sn) samples exposed to ISTTOK plasmas, Nuclear Materials and Energy, 12, pp.709-713. https://doi.org/10.1016/j.nme.2016.12.026
  7. H. W. Ha, 2017 : Design of Reduction Process of $SnO_2$ by $CH_4$ for Efficient Sn Recovery, Scientific Reports, 7, p.14427. https://doi.org/10.1038/s41598-017-14826-7
  8. D. C. Upham, V. Agarwal, A. Khechfe, Z. R Snodgrass, and E.W. McFarland, 2017 : Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon, Science, 358, pp.917-921. https://doi.org/10.1126/science.aao5023
  9. K. W. Lee, 2015 : Produce of High Purity Tin from Spent Solder by Electro Refining, J. of Korean Inst. of Resources Recycling, 24(2), pp.62-68. https://doi.org/10.7844/kirr.2015.24.2.62
  10. C. Y. Zhao, F. S. Pan, and H. C. Pan, 2016 : Microstructure, mechanical and bio-corrosion properties of as-extruded Mg-Sn-Ca alloys, Trans.Nonferrous Met.Soc. 26, pp.1574-1582. https://doi.org/10.1016/S1003-6326(16)64232-2