DOI QR코드

DOI QR Code

A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks

  • Shemirani, Alireza Bagher (Department of Civil Engineering, Sadra Institute of Higher Education) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Haeri, Hadi (Young Researchers and Elite Club, Bafgh Branch, Islamic Azad University) ;
  • Marji, Mohammad Fatehi (Head of Mine Exploitation Engineering Department, Faculty of Mining and Metallurgy, Institution of Engineering, Yazd University) ;
  • Hosseini, Seyed shahin (Department of Civil Engineering, Aria University of Sciences and Sustainability)
  • Received : 2017.08.12
  • Accepted : 2017.10.27
  • Published : 2018.02.25

Abstract

A discrete element approach is used to investigate the effects of confining stress on the shear behaviour of joint's bridge area. A punch-through shear test is used to model the concrete cracks under different shear and confining stresses. Assuming a plane strain condition, special rectangular models are prepared with dimension of $75mm{\times}100mm$. Within the specimen model and near its four corners, four equally spaced vertical notches of the same depths are provided so that the central portion of the model remains intact. The lengths of notches are 35 mm. and these models are sequentially subjected to different confining pressures ranging from 2.5 to 15 MPa. The axial load is applied to the punch through the central portion of the model. This testing and models show that the failure process is mostly governed by the confining pressure. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced shear bands which are increased by increasing the confining pressure while the cracks propagation lengths are decreased. The failure stress and the crack initiation stress both are increased due to confining pressure increase. As a whole, the mechanisms of brittle shear failure changes to that of the progressive failure by increasing the confining pressure.

Keywords

References

  1. Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012
  2. Baud, P., Reuschle, T. and Charlez, P, (1996), "An improved wing crack model for the deformation and failure of rock in compression", Int. J. Rock Mech. Min. Sci. Geomech. Abs., 33(5), 539-542. https://doi.org/10.1016/0148-9062(96)00004-6
  3. Bobet, A. (2001), "A hybridized displacement discontinuity method for mixed mode I-II-III loading", Int. J. Rock Mech. Min. Sci., 38(8), 1121-1134. https://doi.org/10.1016/S1365-1609(01)00081-8
  4. Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9
  5. Bobet, A. and Einstein, H.H. (1998), "Numerical modeling of fracture coalescence in a model rock material", Int. J. Fract., 92(3), 221- 252. https://doi.org/10.1023/A:1007460316400
  6. Brown, E.T. (1970), "Strength of models of rock with intermittent joints", J. Soil Mech. Found. Div., ASCE, 96, 1935-1949.
  7. Chan, H.C.M., Li, V. and Einstein, H.H. (1990), "A hybridized displacement discontinuity and indirect boundary element method to model fracture propagation", Int. J. Fract., 45(4), 263-282. https://doi.org/10.1007/BF00036271
  8. Chen, X., Liao, Z.H. and Peng, X. (2013), "Cracking process of rock mass models under uniaxial compression", J. Central South Univ., 20(6), 1661-1678. https://doi.org/10.1007/s11771-013-1660-2
  9. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  10. De Bremaecker, J.C. and Ferris, M.C. (2004), "Numerical models of shear fracture propagation", Eng. Fract. Mech., 71(15), 2161-2178. https://doi.org/10.1016/j.engfracmech.2003.12.006
  11. Einstein, H.H., Veneziano, D., Baecher, G.B. and O'Reilly, K.J. (1983), "The effect of discontinuity persistence on rock slope stability", Int. J. Rock Mech. Min. Sci. Geomech. Abs., 20(5), 227-36. https://doi.org/10.1016/0148-9062(83)90003-7
  12. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  13. Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2
  14. Haeri, H. (2015), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16, 605-623, https://doi.org/10.12989/cac.2015.16.4.605
  15. Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-12. https://doi.org/10.12989/cac.2016.17.1.107
  16. Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737 https://doi.org/10.12989/cac.2016.17.6.723
  17. Haeri, H. and Sarfarazi, V. (2016c), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, 18, 201-214. https://doi.org/10.12989/cac.2016.18.2.201
  18. Haeri, H., Khaloo, A. and Fatehi Marji, M. (2015), "Fracture analyses of different preholed concrete specimens under compression", Acta Mech Sin, 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  19. Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016d), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  20. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013), "Modeling the propagation mechanism of two random micro cracks in rock Samples under uniform tensile loading", 13th International Conference on Fracture, Beijing, China.
  21. Kulatilake, P.H.S.W., Malama, B. and Wang, J. (2001), "Physical and particle flow modeling of jointed rock block behavior under uniaxial loading", Int. J. Rock Mech. Min. Sci., 38(5), 641-657. https://doi.org/10.1016/S1365-1609(01)00025-9
  22. Lajtai, E.Z. (1974), "Brittle fracture in compression", Int. J. Fract., 10(4), 525-536. https://doi.org/10.1007/BF00155255
  23. Li, J. Y., Zhou, H., Zhu, W. and Li, S. (2016), "Experimental and numerical investigations on the shear behavior of a jointed rock mass", Geosci. J., 20, 371-379. https://doi.org/10.1007/s12303-015-0052-z
  24. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new minigrating absolute displacement measuring system for static and dynamic geomechanical model tests", Measur., 82, 421-431.
  25. Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Mater., 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
  26. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  27. Mughieda, O. and Karasneh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geolog. Eng., 24(4), 985-999. https://doi.org/10.1007/s10706-005-8352-0
  28. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  29. Ozcebe, G. (2011), "Minimum flexural reinforcement for T-beams made of higher strength concrete", Can. J. Civil Eng., 26, 525-534.
  30. Prudencio, M. (2009), "Study of the strength and failure mode of rock mass with non-persistent joints", Ph.D. Thesis, Catholic University of Chile, Santiago, Chile.
  31. Prudencio, M. and Van Sint Jan, M. (2007), "Strength and failure modes of rock mass models with non-persistent joints", Int. J. Rock Mech. Min. Sci., 44(6), 890-902 https://doi.org/10.1016/j.ijrmms.2007.01.005
  32. Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241 https://doi.org/10.1016/S1365-1609(02)00027-8
  33. Sahouryeh, E., Dyskin, A.V. and Germanovich, L.N. (2002), "Crack growth under biaxial compression", Eng. Fract. Mech., 69(18), 2187-2198, https://doi.org/10.1016/S0013-7944(02)00015-2
  34. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  35. Sarfarazi, V. and Haeri, H., (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370
  36. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284 https://doi.org/10.12989/ACC.2015.3.4.269
  37. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  38. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  39. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  40. Tang, C.A. and Kou, S.Q. (1998), "Crack propagation and coalescence in brittle materials under compression", Eng. Fract. Mech., 61(3-4), 311-324. https://doi.org/10.1016/S0013-7944(98)00067-8
  41. Tang, C.A., Lin, P., Wong, R.H.C. and Chau, K.T. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-Part II: numerical approach", Int. J. Rock Mech. Min. Sci., 38(7), 925-939. https://doi.org/10.1016/S1365-1609(01)00065-X
  42. Tang, C.A., Liu, H., Lee, P.K.K., Tsui, Y. and Tham, L.G. (2000a), "Numerical studies of the influence of microstructure on rock failure in uniaxial compression-art I: Effect of heterogeneity", Int. J. Rock Mech. Min. Sci., 37(4), 555-569. https://doi.org/10.1016/S1365-1609(99)00121-5
  43. Tang, C.A., Tham, L.G., Lee, P.K.K., Tsui, Y. and Liu, H. (2000b), "Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part II: constraint, slenderness and size effect", Int. J. Rock Mech. Min. Sci., 37(4), 571-583. https://doi.org/10.1016/S1365-1609(99)00122-7
  44. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  45. Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propa-gation and coalescence in uniaxial compression", Rock Mech. Rock. Eng., 33(2), 119-139 https://doi.org/10.1007/s006030050038
  46. Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Procedia-Soc. Behav. Sci., 198, 2280-2289.
  47. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  48. Wong, L.N.Y. and Einstein, H.H. (2009a), "Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511 https://doi.org/10.1007/s00603-008-0002-4
  49. Wong, L.N.Y. and Einstein, H.H. (2009b), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2), 239-249 https://doi.org/10.1016/j.ijrmms.2008.03.006
  50. Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3
  51. Wong, R.H.C. and Einstein, H.H. (2009), "Crack coalescence in molded gypsum and Carrara marble: Part I. macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4
  52. Wong, R.H.C., Chau, K.T., Tang, C.A. and Lin, P. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-part I: experimental approach", Int. J. Rock Mech. Min. Sci., 38(7), 909-924 https://doi.org/10.1016/S1365-1609(01)00064-8
  53. Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8, 541-557 https://doi.org/10.12989/gae.2015.8.4.541
  54. Yang, S.T., Hu, X.Z. and Wu, Z.M. (2011), "Influence of local fracture energy distribution on maximum fracture load of threepoint-bending notched concrete beams", Eng. Fract. Mech., 78, 3289-99. https://doi.org/10.1016/j.engfracmech.2011.09.019
  55. Yang, Y.F., Tang, C.A. and Xia, K.W. (2012), "Study on crack curving and branching mechanism in quasibrittle materials under dynamic biaxial loading", Int. J. Fract., 177(1), 53-72. https://doi.org/10.1007/s10704-012-9755-6
  56. Yin, P., Wong, R.H.C. and Chau, K.T. (2014), "Coalescence of two parallel preexisting surface cracks in granite", Int. J. Rock Mech. Min. Sci., 68, 66-84
  57. Zhang, H., He, Y., Han, L, Jiang, B., Liang, Z. and Zhong, S. (2009), "Microfracturing characteristics in brittle material containing structural defects under biaxial loading", Comput. Mater. Sci., 46(3), 682-686. https://doi.org/10.1016/j.commatsci.2009.05.015
  58. Zhang, X.P. and Wong, L.N.Y. (2011), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z
  59. Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1
  60. Zhou, X.P., Cheng, H. and Feng, Y.F. (2013), "An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression", Rock Mech. Rock Eng., 47-6, 1961-1986. https://doi.org/10.1007/s00603-013-0511-7
  61. Zhu, Z., Xie, H. and Ji, S. (1997), "The mixed boundary problems for a mixed mode crack in a finite plate", Eng. Fract. Mech., 6(5), 647-655.