References
- Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012
- Baud, P., Reuschle, T. and Charlez, P, (1996), "An improved wing crack model for the deformation and failure of rock in compression", Int. J. Rock Mech. Min. Sci. Geomech. Abs., 33(5), 539-542. https://doi.org/10.1016/0148-9062(96)00004-6
- Bobet, A. (2001), "A hybridized displacement discontinuity method for mixed mode I-II-III loading", Int. J. Rock Mech. Min. Sci., 38(8), 1121-1134. https://doi.org/10.1016/S1365-1609(01)00081-8
- Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9
- Bobet, A. and Einstein, H.H. (1998), "Numerical modeling of fracture coalescence in a model rock material", Int. J. Fract., 92(3), 221- 252. https://doi.org/10.1023/A:1007460316400
- Brown, E.T. (1970), "Strength of models of rock with intermittent joints", J. Soil Mech. Found. Div., ASCE, 96, 1935-1949.
- Chan, H.C.M., Li, V. and Einstein, H.H. (1990), "A hybridized displacement discontinuity and indirect boundary element method to model fracture propagation", Int. J. Fract., 45(4), 263-282. https://doi.org/10.1007/BF00036271
- Chen, X., Liao, Z.H. and Peng, X. (2013), "Cracking process of rock mass models under uniaxial compression", J. Central South Univ., 20(6), 1661-1678. https://doi.org/10.1007/s11771-013-1660-2
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- De Bremaecker, J.C. and Ferris, M.C. (2004), "Numerical models of shear fracture propagation", Eng. Fract. Mech., 71(15), 2161-2178. https://doi.org/10.1016/j.engfracmech.2003.12.006
- Einstein, H.H., Veneziano, D., Baecher, G.B. and O'Reilly, K.J. (1983), "The effect of discontinuity persistence on rock slope stability", Int. J. Rock Mech. Min. Sci. Geomech. Abs., 20(5), 227-36. https://doi.org/10.1016/0148-9062(83)90003-7
- Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
- Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2
- Haeri, H. (2015), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16, 605-623, https://doi.org/10.12989/cac.2015.16.4.605
- Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-12. https://doi.org/10.12989/cac.2016.17.1.107
- Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737 https://doi.org/10.12989/cac.2016.17.6.723
- Haeri, H. and Sarfarazi, V. (2016c), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, 18, 201-214. https://doi.org/10.12989/cac.2016.18.2.201
- Haeri, H., Khaloo, A. and Fatehi Marji, M. (2015), "Fracture analyses of different preholed concrete specimens under compression", Acta Mech Sin, 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
- Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016d), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
- Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013), "Modeling the propagation mechanism of two random micro cracks in rock Samples under uniform tensile loading", 13th International Conference on Fracture, Beijing, China.
- Kulatilake, P.H.S.W., Malama, B. and Wang, J. (2001), "Physical and particle flow modeling of jointed rock block behavior under uniaxial loading", Int. J. Rock Mech. Min. Sci., 38(5), 641-657. https://doi.org/10.1016/S1365-1609(01)00025-9
- Lajtai, E.Z. (1974), "Brittle fracture in compression", Int. J. Fract., 10(4), 525-536. https://doi.org/10.1007/BF00155255
- Li, J. Y., Zhou, H., Zhu, W. and Li, S. (2016), "Experimental and numerical investigations on the shear behavior of a jointed rock mass", Geosci. J., 20, 371-379. https://doi.org/10.1007/s12303-015-0052-z
- Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new minigrating absolute displacement measuring system for static and dynamic geomechanical model tests", Measur., 82, 421-431.
- Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Mater., 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
- Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
- Mughieda, O. and Karasneh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geolog. Eng., 24(4), 985-999. https://doi.org/10.1007/s10706-005-8352-0
- Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
- Ozcebe, G. (2011), "Minimum flexural reinforcement for T-beams made of higher strength concrete", Can. J. Civil Eng., 26, 525-534.
- Prudencio, M. (2009), "Study of the strength and failure mode of rock mass with non-persistent joints", Ph.D. Thesis, Catholic University of Chile, Santiago, Chile.
- Prudencio, M. and Van Sint Jan, M. (2007), "Strength and failure modes of rock mass models with non-persistent joints", Int. J. Rock Mech. Min. Sci., 44(6), 890-902 https://doi.org/10.1016/j.ijrmms.2007.01.005
- Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241 https://doi.org/10.1016/S1365-1609(02)00027-8
- Sahouryeh, E., Dyskin, A.V. and Germanovich, L.N. (2002), "Crack growth under biaxial compression", Eng. Fract. Mech., 69(18), 2187-2198, https://doi.org/10.1016/S0013-7944(02)00015-2
- Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
- Sarfarazi, V. and Haeri, H., (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370
- Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284 https://doi.org/10.12989/ACC.2015.3.4.269
- Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
- Sarfarazi, V., Haeri, H. and Khaloo, A. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
- Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
- Tang, C.A. and Kou, S.Q. (1998), "Crack propagation and coalescence in brittle materials under compression", Eng. Fract. Mech., 61(3-4), 311-324. https://doi.org/10.1016/S0013-7944(98)00067-8
- Tang, C.A., Lin, P., Wong, R.H.C. and Chau, K.T. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-Part II: numerical approach", Int. J. Rock Mech. Min. Sci., 38(7), 925-939. https://doi.org/10.1016/S1365-1609(01)00065-X
- Tang, C.A., Liu, H., Lee, P.K.K., Tsui, Y. and Tham, L.G. (2000a), "Numerical studies of the influence of microstructure on rock failure in uniaxial compression-art I: Effect of heterogeneity", Int. J. Rock Mech. Min. Sci., 37(4), 555-569. https://doi.org/10.1016/S1365-1609(99)00121-5
- Tang, C.A., Tham, L.G., Lee, P.K.K., Tsui, Y. and Liu, H. (2000b), "Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part II: constraint, slenderness and size effect", Int. J. Rock Mech. Min. Sci., 37(4), 571-583. https://doi.org/10.1016/S1365-1609(99)00122-7
- Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
- Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propa-gation and coalescence in uniaxial compression", Rock Mech. Rock. Eng., 33(2), 119-139 https://doi.org/10.1007/s006030050038
- Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Procedia-Soc. Behav. Sci., 198, 2280-2289.
- Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
- Wong, L.N.Y. and Einstein, H.H. (2009a), "Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511 https://doi.org/10.1007/s00603-008-0002-4
- Wong, L.N.Y. and Einstein, H.H. (2009b), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2), 239-249 https://doi.org/10.1016/j.ijrmms.2008.03.006
- Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3
- Wong, R.H.C. and Einstein, H.H. (2009), "Crack coalescence in molded gypsum and Carrara marble: Part I. macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4
- Wong, R.H.C., Chau, K.T., Tang, C.A. and Lin, P. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-part I: experimental approach", Int. J. Rock Mech. Min. Sci., 38(7), 909-924 https://doi.org/10.1016/S1365-1609(01)00064-8
- Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8, 541-557 https://doi.org/10.12989/gae.2015.8.4.541
- Yang, S.T., Hu, X.Z. and Wu, Z.M. (2011), "Influence of local fracture energy distribution on maximum fracture load of threepoint-bending notched concrete beams", Eng. Fract. Mech., 78, 3289-99. https://doi.org/10.1016/j.engfracmech.2011.09.019
- Yang, Y.F., Tang, C.A. and Xia, K.W. (2012), "Study on crack curving and branching mechanism in quasibrittle materials under dynamic biaxial loading", Int. J. Fract., 177(1), 53-72. https://doi.org/10.1007/s10704-012-9755-6
- Yin, P., Wong, R.H.C. and Chau, K.T. (2014), "Coalescence of two parallel preexisting surface cracks in granite", Int. J. Rock Mech. Min. Sci., 68, 66-84
- Zhang, H., He, Y., Han, L, Jiang, B., Liang, Z. and Zhong, S. (2009), "Microfracturing characteristics in brittle material containing structural defects under biaxial loading", Comput. Mater. Sci., 46(3), 682-686. https://doi.org/10.1016/j.commatsci.2009.05.015
- Zhang, X.P. and Wong, L.N.Y. (2011), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z
- Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1
- Zhou, X.P., Cheng, H. and Feng, Y.F. (2013), "An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression", Rock Mech. Rock Eng., 47-6, 1961-1986. https://doi.org/10.1007/s00603-013-0511-7
- Zhu, Z., Xie, H. and Ji, S. (1997), "The mixed boundary problems for a mixed mode crack in a finite plate", Eng. Fract. Mech., 6(5), 647-655.