Acknowledgement
Supported by : China Postdoctoral Science Foundation
References
- Andreev, G. (1991a), "A review of the Brazilian test for rock tensile strength determination. Part I: Calculation formula", Min. Sci. Technol., 13(3), 445-456. https://doi.org/10.1016/0167-9031(91)91006-4
- Andreev, G. (1991b), "A review of the Brazilian test for rock tensile strength determination. Part II: Contact conditions", Min. Sci. Technol., 13(3), 457-465. https://doi.org/10.1016/0167-9031(91)91035-G
- Erarslan, N. and Williams, D.J. (2012), "Experimental, numerical and analytical studies on tensile strength of rocks", J. Rock. Mech. Min. Sci., 49, 21-30. https://doi.org/10.1016/j.ijrmms.2011.11.007
- Fairhurst, C. (1964), "On the validity of the 'Brazilian' test for brittle materials", Rock Mech. Min. Sci. Geomech. Abstr., 1(4), 535-546. https://doi.org/10.1016/0148-9062(64)90060-9
- Filimonov, Y.L., Lavrov, A., Shafarenko, Y. and Shkuratnik, V. (2001), "Memory effects in rock salt under triaxial stress state and their use for stress measurement in a rock mass", Rock Mech. Rock Eng., 34(4), 275-291. https://doi.org/10.1007/s006030170002
- Fu, X., Xie, Q. and Liang, L. (2015), "Comparison of the Kaiser effect in marble under tensile stresses between the Brazilian and bending tests", Bull. Eng. Geol. Environ., 74(2), 535-543. https://doi.org/10.1007/s10064-014-0707-4
- Goodman, R.E. (1963), "Subaudible noise during compression of rocks", Geol. Soc. Am. Bull., 74(4), 487-490. https://doi.org/10.1130/0016-7606(1963)74[487:SNDCOR]2.0.CO;2
- Hashiba, K. and Fukui, K. (2015), "Effect of water on the deformation and failure of rock in uniaxial tension", Rock Mech. Rock Eng., 48(5), 1751-1761. https://doi.org/10.1007/s00603-014-0674-x
- Hsieh, A., Dight, P. and Dyskin, A. (2015), "The rock stress memory unrecoverable by the Kaiser effect method", J. Rock. Mech. Min. Sci., (75), 190-195.
- Kaiser, J. (1953), "Erkenntnisse und folgerungen aus der messung von geräuschen bei zugbeanspruchung von metallischen werkstoffen", Steel Res., 24(1-2), 43-45.
- Khanlari, G.R., Heidari, M., Sepahigero, A.A. and Fereidooni, D. (2014), "Quantification of strength anisotropy of metamorphic rocks of the Hamedan province, Iran, as determined from cylindrical punch, point load and Brazilian tests", Eng. Geol., 169, 80-90. https://doi.org/10.1016/j.enggeo.2013.11.014
- Kurita, K. and Fujii, N. (1979), "Stress memory of crystalline rocks in acoustic emission", Geophys. Res. Lett., 6(1), 9-12. https://doi.org/10.1029/GL006i001p00009
- Lanaro, F., Sato, T. and Stephansson, O. (2009), "Microcrack modelling of Brazilian tensile tests with the boundary element method", J. Rock. Mech. Min. Sci., 46(3), 450-461. https://doi.org/10.1016/j.ijrmms.2008.11.007
- Lavrov, A. (2003), "The Kaiser effect in rocks: Principles and stress estimation techniques", J. Rock. Mech. Min. Sci., 40(2), 151-171. https://doi.org/10.1016/S1365-1609(02)00138-7
- Li, C. and Nordlund, E. (1993), "Experimental verification of the Kaiser effect in rocks", Rock Mech. Rock Eng., 26(4), 333-351. https://doi.org/10.1007/BF01027116
- Li, D. and Wong, L.N.Y. (2013), "The Brazilian disc test for rock mechanics applications: Review and new insights", Rock Mech. Rock Eng., 46(2), 269-287. https://doi.org/10.1007/s00603-012-0257-7
- Liu, J., Chen, L., Wang, C., Man, K., Wang, L., Wang, J. and Su, R. (2014), "Characterizing the mechanical tensile behavior of Beishan granite with different experimental methods", J. Rock. Mech. Min. Sci., 69, 50-58.
- Mao, W. and Towhata, I. (2015), "Monitoring of single-particle fragmentation process under static loading using acoustic emission", Appl. Acoust., 94, 39-45. https://doi.org/10.1016/j.apacoust.2015.02.007
- Mikl-Resch, M.J., Antretter, T., Gimpel, M., Kargl, H., Pittino, G., Tichy, R., Ecker, W. and Galler, R. (2015), "Numerical calibration of a yield limit function for rock materials by means of the Brazilian test and the uniaxial compression test", J. Rock. Mech. Min. Sci., 74, 24-29.
- Nian, T., Wang, G. and Song, H. (2017), Open tensile fractures at depth in anticlines: A case study in the Tarim basin, NW china", Terra Nova, 29(3), 183-190. https://doi.org/10.1111/ter.12261
- Saksala, T., Hokka, M., Kuokkala, V.T. and Makinen, J. (2013), "Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite", J. Rock. Mech. Min. Sci., 59, 128-138.
- Seto, M., Nag, D. and Vutukuri, V. (1999), "In-situ rock stress measurement from rock cores using the acoustic emission method and deformation rate analysis", Geotech. Geol. Eng., 17(3-4), 241-266. https://doi.org/10.1023/A:1008981727366
- Seto, M., Utagawa, M., Katsuyama, K., Nag, D. and Vutukuri, V. (1997), "In situ stress determination by acoustic emission technique", J. Rock. Mech. Min. Sci., 34(3-4), 281.
- Tuncay, E. and Ulusay, R. (2008), "Relation between Kaiser effect levels and pre-stresses applied in the laboratory", J. Rock. Mech. Min. Sci., 45(4), 524-537. https://doi.org/10.1016/j.ijrmms.2007.07.013
- Villaescusa, E., Seto, M. and Baird, G. (2002), "Stress measurements from oriented core", J. Rock. Mech. Min. Sci., 39(5), 603-615. https://doi.org/10.1016/S1365-1609(02)00059-X
- Wu, B., Chen, R. and Xia, K. (2015), "Dynamic tensile failure of rocks under static pre-tension", J. Rock. Mech. Min. Sci., 80, 12-18.
- Xue, L., Qin, S., Sun, Q., Wang, Y., Lee, L.M. and Li, W. (2014), "A study on crack damage stress thresholds of different rock types based on uniaxial compression tests", Rock Mech. Rock Eng., 47(4), 1183-1195. https://doi.org/10.1007/s00603-013-0479-3
- Yang, S.Q., Ranjith, P. and Gui, Y.L. (2015), "Experimental study of mechanical behavior and x-ray micro ct observations of sandstone under conventional triaxial compression", Geotech. Test. J., 38(2), 179-197. https://doi.org/10.1520/GTJ20140209
- Yuan, R. and Shen, B. (2017), "Numerical modelling of the contact condition of a Brazilian disk test and its influence on the tensile strength of rock", J. Rock. Mech. Min. Sci., 93, 54-65.
Cited by
- Estimation of tensile strength and moduli of a tension-compression bi-modular rock vol.24, pp.4, 2021, https://doi.org/10.12989/gae.2021.24.4.349
- Cluster and information entropy analysis of acoustic emission during rock failure process vol.25, pp.2, 2018, https://doi.org/10.12989/gae.2021.25.2.135