DOI QR코드

DOI QR Code

ON PSEUDO SEMI-PROJECTIVE SYMMETRIC MANIFOLDS

  • De, Uday Chand (Department of Pure Mathematics University of Calcutta) ;
  • Majhi, Pradip (Department of Pure Mathematics University of Calcutta)
  • 투고 : 2017.04.17
  • 심사 : 2017.12.29
  • 발행 : 2018.03.01

초록

In this paper we introduce a new tensor named semi-projective curvature tensor which generalizes the projective curvature tensor. First we deduce some basic geometric properties of semi-projective curvature tensor. Then we study pseudo semi-projective symmetric manifolds $(PSPS)_n$ which recover some known results of Chaki [5]. We provide several interesting results. Among others we prove that in a $(PSPS)_n$ if the associated vector field ${\rho}$ is a unit parallel vector field, then either the manifold reduces to a pseudosymmetric manifold or pseudo projective symmetric manifold. Moreover we deal with semi-projectively flat perfect fluid and dust fluid spacetimes respectively. As a consequence we obtain some important theorems. Next we consider the decomposability of $(PSPS)_n$. Finally, we construct a non-trivial Lorentzian metric of $(PSPS)_4$.

키워드

참고문헌

  1. A. Barnes, On shear free normal ows of a perfect fluid, General Relativity and Gravitation 4 (1973), no. 2, 105-129. https://doi.org/10.1007/BF00762798
  2. J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Monographs and Textbooks in Pure and Applied Math., 67, Marcel Dekker, Inc., New York, 1981.
  3. R. R. Caldwell, M. Kaminonkowski, and N. N. Weinberg, Phantom energy and cosmic doomsday, arxiv:astro-ph/0302506v1.
  4. E. Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926), 214-264.
  5. M. C. Chaki, On pseudosymmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), no. 1, 53-58.
  6. M. C. Chaki and S. Ray, Space-times with covariant-constant energy-momentum tensor, Internat. J. Theoret. Phys. 35 (1996), no. 5, 1027-1032. https://doi.org/10.1007/BF02302387
  7. M. C. Chaki and S. K. Saha, On pseudo-projective Ricci symmetric manifolds, Bulgar. J. Phys. 21 (1994), no. 1-2, 1-7.
  8. C. J. S. Clarke, Singularities: global and local aspects, in Topological properties and global structure of space-time (Erice, 1985), 61-71, NATO Adv. Sci. Inst. Ser. B Phys., 138, Plenum, New York, 1986.
  9. U. C. De and L. Velimirovic, Spacetimes with semisymmetric energy-momentum tensor, Internat. J. Theoret. Phys. 54 (2015), no. 6, 1779-1783. https://doi.org/10.1007/s10773-014-2381-5
  10. F. A. Ficken, The Riemannian and affine differential geometry of product-spaces, Ann. of Math. (2) 40 (1939), 892-913. https://doi.org/10.2307/1968900
  11. R. Geroch, Space-time structure from a global viewpoint, in General relativity and cosmology (Proc. Internat. School of Physics "Enrico Fermi", Italian Phys. Soc., Varenna, 1969), 71-103, Academic Press, New York, 1971.
  12. A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), no. 3, 259-280. https://doi.org/10.1007/BF00151525
  13. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, London, 1973.
  14. P. S. Joshi, Global Aspects in Gravitation and Cosmology, International Series of Monographs on Physics, 87, The Clarendon Press, Oxford University Press, New York, 1993.
  15. S. Mallick and U. C. De, Spacetimes admitting W2-curvature tensor, Int. J. Geom. Methods Mod. Phys. 11 (2014), no. 4, 1450030, 8 pp. https://doi.org/10.1142/S0219887814500303
  16. C. A. Mantica and L. G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar. 135 (2012), no. 1-2, 80-96. https://doi.org/10.1007/s10474-011-0166-3
  17. C. A. Mantica and L. G. Molinari, Generalized Robertson-Walker spacetimes - a survey, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 3, 1730001, 27 pp. https://doi.org/10.1142/S021988781730001X
  18. C. A. Mantica, L. G. Molinari, and U. C. De, A condition for a perfect-fluid spacetime to be a generalized Robertson-Walker space-time, J. Math. Phys. 57 (2016), no. 2, 022508, 6 pp. https://doi.org/10.1063/1.4941942
  19. C. A. Mantica and Y. J. Suh, Pseudo-Z symmetric space-times, J. Math. Phys. 55 (2014), no. 4, 042502, 12 pp. https://doi.org/10.1063/1.4871442
  20. C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 1, 1250004, 21 pp. https://doi.org/10.1142/S0219887812500041
  21. C. A. Mantica and Y. J. Suh, Recurrent Z forms on Riemannian and Kaehler manifolds, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 7, 1250059, 26 pp. https://doi.org/10.1142/S0219887812500594
  22. C. A. Mantica and Y. J. Suh, Pseudo-Q-symmetric Riemannian manifolds, Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 5, 1350013, 25 pp. https://doi.org/10.1142/S0219887813500138
  23. C. A. Mantica, Y. J. Suh, and U. C. De, A note on generalized Robertson-Walker spacetimes, Int. J. Geom. Methods Mod. Phys. 13 (2016), no. 6, 1650079, 9 pp. https://doi.org/10.1142/S0219887816500791
  24. J. V. Narlikar, Lectures on general relativity and cosmology, Macmillan Co. of India, Ltd., New Delhi, 1979.
  25. B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
  26. S. Ray, Certain investigations in relativity ans cosmology by differential geometric method, University of Kalyani, April,1999, 29 pp.
  27. S. K. Srivastava, General Relativity and Cosmology, Prentice-Hall of India Private Limited, New Delhi, 2008.
  28. H. Stephani, General Relativity, translated from the German by Martin Pollock and John Stewart, Cambridge University Press, Cambridge, 1982.
  29. F. Zengin, M-projectively flat spacetimes, Math. Rep. (Bucur.) 14(64) (2012), no. 4, 363-370.