DOI QR코드

DOI QR Code

A GENERAL RICCI FLOW SYSTEM

  • Wu, Jia-Yong (Department of Mathematics Shanghai Maritime University)
  • Received : 2017.01.07
  • Accepted : 2017.12.15
  • Published : 2018.03.01

Abstract

In this paper, we introduce a general Ricci flow system, which is closely linked with the Ricci flow and the renormalization group flow, etc. We prove the short-time existence, the entropy functionals, the higher derivatives estimates and the compactness theorem for this general Ricci flow system on closed Riemannian manifolds. These basic results are useful tools to understand the singularities of this system.

Keywords

References

  1. B. Chow, S. C. Chu, D. Glickenstein, C. Guentheretc, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni, The Ricci ow: techniques and applications. Part I, Mathematical Surveys and Monographs, 135, American Mathematical Society, Providence, RI, 2007.
  2. B. Chow and D. Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004.
  3. B. Chow, P. Lu, and L. Ni, Hamilton's Ricci flow, Lectures in Contemporary Mathematics 3, Science Press and Amer. Math. Soc., 2006.
  4. D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), no. 1, 157-162. https://doi.org/10.4310/jdg/1214509286
  5. M. Feldman, T. Ilmanen, and L. Ni, Entropy and reduced distance for Ricci expanders, J. Geom. Anal. 15 (2005), no. 1, 49-62. https://doi.org/10.1007/BF02921858
  6. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. https://doi.org/10.4310/jdg/1214436922
  7. R. S. Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995), no. 3, 545-572. https://doi.org/10.2307/2375080
  8. N. Hitchin, Lectures on special Lagrangian submanifolds, in Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), 151-182, AMS/IP Stud. Adv. Math., 23, Amer. Math. Soc., Providence, RI, 1999.
  9. Y. Li, Generalized Ricci flow I: Higher-derivative estimates for compact manifolds, Anal. PDE 5 (2012), no. 4, 747-775. https://doi.org/10.2140/apde.2012.5.747
  10. Y. Li, Eigenvalues and entropies under the harmonic-Ricci flow, Pacific J. Math. 267 (2014), no. 1, 141-184. https://doi.org/10.2140/pjm.2014.267.141
  11. B. List, Evolution of an extended Ricci flow system, Comm. Anal. Geom. 16 (2008), no. 5, 1007-1048. https://doi.org/10.4310/CAG.2008.v16.n5.a5
  12. T. Oliynyk, V. Suneeta, and E. Woolgar, A gradient flow for worldsheet nonlinear sigma models, Nuclear Phys. B 739 (2006), no. 3, 441-458. https://doi.org/10.1016/j.nuclphysb.2006.01.036
  13. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.
  14. W.-X. Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989), no. 1, 223-301. https://doi.org/10.4310/jdg/1214443292
  15. M. Stern, B fields from a Luddite perspective, in Quantum theory and symmetries, 415-423, World Sci. Publ., Hackensack, NJ, 2004.
  16. J. Streets, Regularity and expanding entropy for connection Ricci flow, J. Geom. Phys. 58 (2008), no. 7, 900-912. https://doi.org/10.1016/j.geomphys.2008.02.010
  17. J. Streets, Singularities of renormalization group flows, J. Geom. Phys. 59 (2009), no. 1, 8-16. https://doi.org/10.1016/j.geomphys.2008.08.002