Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Albrecht, B.A. and Benson, C.H. (2001), "Effect of desiccation on compacted natural clays", J. Geotech. Geoenviron. Eng., 127(1), 67-75. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(67)
- Allaire-Leung, S.E., Gupta, S.C. and Moncrief, J.F. (2000), "Water and solute movement in soil as influenced by macropore characteristics: 1. Macropore continuity", J. Contam. Hydrol., 41(3-4), 283-301. https://doi.org/10.1016/S0169-7722(99)00079-0
- ASTM D5084-10 (2010), Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM D698-12e2 (2012), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12400 ft*lbf/ft3 (600 kN*m/m3)), ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM D7664-10 (2010), Standard Test Methods for Measurement of Hydraulic Conductivity of Unsaturated Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Bauters, T.W.J., DiCarlo, D.A., Steenhuis, T.S. and Parlange, J.Y. (2000), "Soil water content dependent wetting front characteristics in sands", J. Hydrol., 231, 244-254.
- Benson, C.H. and Othman, M.A. (1993), "Hydraulic conductivity of compacted clay frozen and thawed in suit", J. Geotech. Eng., 119(2), 276-294. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:2(276)
- Castiglione, P., Mohanty, B.P., Shouse, P.J., Simunek, J., Van Genuchten, M.T. and Santini, A. (2003), "Lateral water diffusion in an artificial macroporous system: modeling and experimental evidence", Vadose Zone J., 2(2), 212-221. https://doi.org/10.2136/vzj2003.2120
- Chai, J.C., Jia, R., Nie J.X., Aiga, K., Negami, T. and Hino, T. (2015), "1D deformation induced permeability and microstructural anisotropy of Ariake clays", Geomech. Eng., 8(1), 81-95. https://doi.org/10.12989/gae.2015.8.1.081
- Czapar, G.F., Horton, R. and Fawcett, R.S. (1992), "Herbicide and tracer movement in soil columns containing an artificial macropore", J. Environ. Qual., 21(1), 110-115. https://doi.org/10.2134/jeq1992.00472425002100010016x
- Galeandro, A., Simunek, J. and Simeone, V. (2013), "Analysis of rainfall infiltration effects on the stability of pyroclastic soil veneer affected by vertical drying shrinkage fractures", Bull. Eng. Geol. Environ., 72(3-4), 447-455. https://doi.org/10.1007/s10064-013-0492-5
- Gerke, H.H. and van Genuchten, M.T. (1993a), "A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media", Water Resour. Res., 29(2), 305-319. https://doi.org/10.1029/92WR02339
- Gerke, H.H. and van Genuchten, M.T. (1993b), "Evaluation of a first-order water transfer term for variably saturated dualporosity flow models", Water Resource. Res., 29(4), 1225-1238. https://doi.org/10.1029/92WR02467
- Gerke, H.H. and van Genuchten, M.T. (1996), "Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media", Adv. Water Resour., 19(6), 343-357. https://doi.org/10.1016/0309-1708(96)00012-7
- Ghodrati, M., Chendorain, M. and Chang, Y.J. (1999), "Characterization of macropore flow mechanisms in soil by means of a split macropore column", Soil Sci. Soc. Am. J., 63(5), 1093-1101. https://doi.org/10.2136/sssaj1999.6351093x
- Hardie, M.A., Cotching, W.E., Doyle, R.B., Holz, G., Lisson, S. and Mattern, K. (2011), "Effect of antecedent soil moisture on preferential flow in a texture-contrast soil", J. Hydrol., 398(3-4), 191-201. https://doi.org/10.1016/j.jhydrol.2010.12.008
- Hu, Q.H. and Brusseau, M.L. (1995), "Effect of solute size on transport in structured porous media", Water Resour. Res., 31(7), 1637-1646. https://doi.org/10.1029/95WR01138
- Jessberger, H.L. and Stone, K.J.L. (1991), "Subsidence effects on clay barriers", Geotechnique, 41(2), 185-194. https://doi.org/10.1680/geot.1991.41.2.185
- Kohne, J.M. and Mohanty, B.P. (2005), "Water flow processes in a soil column with a cylindrical macropore: Experiment and hierarchical modeling", Water Resour. Res., 41(3), 1-17.
- Krisnanto, S., Rahardjo, H., Fredlund, D.G. and Leong E.C. (2016), "Water content of soil matrix during lateral water flow through cracked soil", Eng. Geol., 210, 168-179. https://doi.org/10.1016/j.enggeo.2016.06.012
- Kuna, B.R., Walsh, K.D., Houston, S.L., Zapata, C. and Welfert, B. (2013), "Full scale test of periodic irrigation infiltration in a cracked and intact clay slope", Proceedings of the Geo-Congress-2013, San Diego, California, U.S.A., March.
- Li, J.H. and Zhang, L.M. (2010), "Geometric parametric and REV of a crack network in soil", Comput. Geotech., 37(4), 466-475. https://doi.org/10.1016/j.compgeo.2010.01.006
- Li, J.H. and Zhang, L.M. (2011b), "Study of desiccation crack initiation and development at ground surface", Eng. Geol., 123(4), 347-358. https://doi.org/10.1016/j.enggeo.2011.09.015
- Li, J.H., Wang, Z.F. and Zhang, L.M. (2011a), "Spatial variability of aperture in a rough-walled crack in surface soil", Proceedings of the GeoRisk-2011: Geotechnical Risk Assessment and Management, Atlanta, Georgia, U.S.A., June.
- Li, Y.M. and Ghodrati, M. (1997), "Preferential transport of solute through soil columns containing constructed macropores", Soil Sci. Soc. Am. J., 61(5), 1308-1317. https://doi.org/10.2136/sssaj1997.03615995006100050004x
- Logsdon, S.D. (1995), "Flow mechanisms through continuous and buried macropores", Soil Sci., 160(4), 237-242. https://doi.org/10.1097/00010694-199510000-00001
- Melchior, S. (1997), "In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)", Proceedings of the International Containment Technology Conference, St. Petersburg, Florida, U.S.A., February.
- Mohanty, B.P., Bowman, R.S., Hendrickx, J.M.H. and Van Genuchten, M.T. (1997), "New piecewise-continuous hydraulic functions for modeling preferential flow in an intermittentflood-irrigated field", Water Resour. Res., 33(9), 2049-2063. https://doi.org/10.1029/97WR01701
- Novak, N., Simaunek, J. and van Genuchten, M.T. (2000), "Infiltration of water into soil with cracks", J. Irrig. Drain. Eng., 126(1), 41-47. https://doi.org/10.1061/(ASCE)0733-9437(2000)126:1(41)
- Omidi, G.H., Thomas, J.C. and Brown, K.W. (1996), "Effect of desiccation cracking on the hydraulic conductivity of a compacted clay liner". Water Air Soil Pollut., 89(1-2), 91-103. https://doi.org/10.1007/BF00300424
- Sajjadi, S.A.H., Mirzaei, M., Nasab, A.F., Ghezelje, A., Tadayonfar, G. and Sarkardeh, H. (2016), "Effect of soil physical properties on infiltration rate", Geomech. Eng., 10(6), 727-736. https://doi.org/10.12989/gae.2016.10.6.727
- Smith, E.D. and Luxmore, R.J. (1997), Natural Physical and Biological Process Compromise the Long-Term Integrity of Compacted Clay Caps, in National Research Council Barrier Technologies for Environmental Management: Summary of a Workshop, Natural Academy Press, Washington, D.C., U.S.A.
- Suter, G.W., Luxmoore, R.J. and Smith, E.D. (1993), "Compacted soil barriers at abandoned landfill sites are likely to fail in the long term", J. Environ. Qual., 22(2), 217-226. https://doi.org/10.2134/jeq1993.00472425002200020001x
- Van Dam, J.C., Huygen, J., Wesseling, J.G., Feddes, R.A., Kabat, P., Van Walsum, P.E.V., Groendijk, P. andVan Diepen, C.A. (1997), Theory of SWAP, Simulation of water flow, Solute Transport and Plant Growth in the Soil-Water-Atmosphere-Plant Environment, Report 71, Technical Document 45; Department of Water Resources, Wageningen Agricultural University, The Netherlands, Dienst Landbouwkunding Onderzoek (Agricultural Research Department) Winand Staring Centre, Wageningen.
- Xue, Q., Wan, Y., Chen, Y.J. and Zhao, Y. (2014), "Experimental research on the evolution laws of soil fabric of compacted clay liner in a landfill final cover under the dry-wet cycle", Bull. Eng. Geol. Environ., 73(2), 517-529. https://doi.org/10.1007/s10064-013-0556-6
Cited by
- Dual‐Permeability Model Improvements for Representation of Preferential Flow in Fractured Clays vol.56, pp.8, 2020, https://doi.org/10.1029/2020wr027304