References
- Bozdogan, K.B. (2009), "An approximate method for static and dynamic analysis of symmetric wall-frame buildings", Struct. Des. Tall Spec. Build., 18(3), 279-290. https://doi.org/10.1002/tal.409
- Bozdogan, K.B. (2012), "Differential quadrature method for free vibration analysis of coupled shear walls", Struct. Eng. Mech., 41(1), 67-81. https://doi.org/10.12989/sem.2012.41.1.067
- Bozdogan, K.B. (2013), "Free vibration analysis of asymmetric shear wall-frame buildings using modified finite elementtransfer matrix method", Struct. Eng. Mech., 46(1), 1-17. https://doi.org/10.12989/sem.2013.46.1.001
- Bozdogan, K.B. and Ozturk, D. (2009), "Vibration analysis of asymmetric shear wall and thin walled open section structures using transfer matrix method", Struct. Eng. Mech., 33(1), 95-107. https://doi.org/10.12989/sem.2009.33.1.095
- Chopra, A.K. (1995), Dynamics of Structures Theory and Application to Earthquake Engineering, Prentice Hall, New Jersey.
- Coull, A. and Bose, B. (1975), "Simplified analysis of framed tube structure", J. Struct. Div., ASCE, 101, 2223-2240.
- Dym, C.L. and Williams, H.E. (2007). "Estimating fundamental frequencies of tall buildings", J. Struct. Eng., ASCE, 133(10), 1479-1483. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1479)
- Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform crosssection", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
- Jahanshahia, M.R. and Rahgozar, R. (2012), "Free vibration analysis of combined system with variable cross section in tall buildings", Struct. Eng. Mech., 42(5), 715-728. https://doi.org/10.12989/sem.2012.42.5.715
- Kamgar, R. and Saadatpour, M.M. (2012), "A simple mathematical model for free vibration analysis of combined system consisting of framed tube, shear core, belt truss and outrigger system with geometrical discontinuities", J. Appl. Math. Model., 36(10) 4918-4930. https://doi.org/10.1016/j.apm.2011.12.029
- Kazaz, I. and Gulkan, P. (2012), "An alternative frame-shear wall model: continuum formulation", Struct. Des. Tall Spec. Build., 21(7), 524-42. https://doi.org/10.1002/tal.626
- Kwan, A.K.H. (1994), "Simple method for approximate analysis of framed tube structures", J. Struct. Eng., ASCE, 120(4), 1221-1239. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:4(1221)
- Lashkari, M. (1988), COSMOS/M User's Guide, Structural Research and Analysis Corporation, California, USA.
- Lee, W.H. (2007), "Free vibration analysis for tube-in-tube tall buildings", J. Sound Vib., 303(1-2), 287-304. https://doi.org/10.1016/j.jsv.2007.01.023
- Malekinejad, M. and Rahgozar, R. (2012), "A simple analytic method for computing the natural frequencies and mode shapes of tall buildings", J. Appl. Math. Model., 36(8) 3419-3432. https://doi.org/10.1016/j.apm.2011.10.018
- Malekinejad, M. and Rahgozar, R. (2013), "An analytical approach to free vibration analysis of multi-outrigger-belt trussreinforced tall buildings", J. Struct. Des. Tall Spec. Build., 22(4) 382-398. https://doi.org/10.1002/tal.703
- Malekinejad, M. and Rahgozar, R. (2014), "An analytical model for dynamic response analysis of tubular tall buildings", J. Struct. Des. Tall Spec. Build., 23(1), 67-80. https://doi.org/10.1002/tal.1039
- Mazinani, I., Jumaat, M.Z., Ismail, Z. and Chao, O.Z. (2014), "Comparison of shear lag in structural steel building with framed tube and braced tube", Struct. Eng. Mech., 49(3), 297-309. https://doi.org/10.12989/sem.2014.49.3.297
- Mohammadnejad, M. (2015), "A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams", Struct. Eng. Mech., 55(3), 655-674. https://doi.org/10.12989/sem.2015.55.3.655
- Mohammadnejad, M., Saffari, H. and Bagheripour, M.H. (2014), "An Analytical approach to vibration analysis of beams with variable properties", Arab. J. Sci. Eng., 39(4), 2561-2572. https://doi.org/10.1007/s13369-013-0898-1
- Park, Y.K., Kim, H.S. and Lee, D.G. (2014), "Efficient structural analysis of wall-frame structures", Struct. Des. Tall Spec. Build., 23(10), 740-759. https://doi.org/10.1002/tal.1078
- Rahgozar, R. Mahmoudzadeh, Z., Malekinejad, M. and Rahgozar, P. (2015), "Dynamic analysis of combined system of framed tube and shear walls by Galerkin method using B-spline functions", Struct. Des. Tall Spec. Build., 24(8), 591-606. https://doi.org/10.1002/tal.1201
- Rahgozar, R., Ahmadi, A., Hosseini, O. and Malekinejad, M. (2011), "A simple mathematical model for static analysis of tall buildings with two outrigger-belt truss systems", Struct. Eng. Mech., 40(1), 65-84. https://doi.org/10.12989/sem.2011.40.1.065
- Reddy, J.N. (1993), An Introduction To the Finite Element Method, McGraw-Hill Book Company, New York.
- Saffari, H. and Mohammadnejad, M. (2015), "On the application of weak form integral equations to free vibration analysis of tall structures", Asian J. Civil Eng. (BHRC), 16(7), 977-999.
- Saffari, H., Mohammadnejad, M. and Bagheripour, M.H. (2012), "Free vibration analysis of non-prismatic beams under variable axial forces", Struct. Eng. Mech., 43(5), 561-582. https://doi.org/10.12989/sem.2012.43.5.561
- Wang, Q. (1989), "The variational equation for solving natural vibration of tube in tube structure", China J. Build. Struct., 10, 64-70.
- Wang, Q. (1996), "Modified ODE-solver for vibration of tube-in-tube structures", J. Comput. Meth. Appl. Mech. Eng., 129(1-2), 151-156. https://doi.org/10.1016/0045-7825(95)00895-0
- Wang, Q. (1996), "Sturm-Liouville equation for free vibration of a tube-in-tube tall building", J. Sound Vib., 191(3), 349-355. https://doi.org/10.1006/jsvi.1996.0126
- Youlin, Z. (1984), "Simplified analysis of tube-in-tube structures", J. Build. Struct., 5, 9-21.
Cited by
- Reducing static roof displacement and axial forces of columns in tall buildings based on obtaining the best locations for multi-rigid belt truss outrigger systems vol.20, pp.6, 2019, https://doi.org/10.1007/s42107-019-00142-0
- Optimum location for the belt truss system for minimum roof displacement of steel buildings subjected to critical excitation vol.37, pp.4, 2018, https://doi.org/10.12989/scs.2020.37.4.463