DOI QR코드

DOI QR Code

Removal of Cd(II) from water using carbon, boron nitride and silicon carbide nanotubes

  • Azamat, Jafar (Department of Chemical Engineering, Ahar Branch, Islamic Azad University) ;
  • Hazizadeh, Behzad (Department of Chemical Engineering, Ahar Branch, Islamic Azad University)
  • Received : 2017.06.17
  • Accepted : 2017.11.13
  • Published : 2018.01.25

Abstract

Molecular dynamics simulations were used to study the removal of Cd(II) as a heavy metal from wastewater using armchair carbon nanotube, boron nitride nanotube and silicon carbide nanotubes under applied electric field. The system contains an aqueous solution of $CdCl_2$ as a heavy metal and a (7,7) nanotube as a nanostructured membrane, embedded in a silicon nitride membrane. An external electric field was applied to the considered system for the removal of $Cd^{2+}$ through nanotubes. The simulation results show that in the same conditions, considered armchair nanotubes were capable to remove $Cd^{2+}$ from wastewater with different ratios. Our results reveal that the removal of heavy metals ions through armchair carbon, boron nitride and silicon carbide nanotubes was attributed to the applied electric field. The selective removal phenomenon is explained with the calculation of potential of mean force. Therefore, the investigated systems can be recommended as a model for the water treatment.

Keywords

Acknowledgement

Supported by : Ahar Branch Islamic Azad University, Iranian Nanotechnology Initiative Council

References

  1. Alyuz, B. and Veli, S. (2009), "Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins", J. Hazard. Mater., 167(1), 482-488. https://doi.org/10.1016/j.jhazmat.2009.01.006
  2. Azamat, J. (2016), "Functionalized graphene nanosheet as a membrane for water desalination using applied electric fields: Insights from molecular dynamics simulations", J. Phys. Chem. C, 120(41), 23883-23891. https://doi.org/10.1021/acs.jpcc.6b08481
  3. Azamat, J., Balaei, A. and Gerami, M. (2016a), "A theoretical study of nanostructure membranes for separating Li+ and Mg2+ from Cl-", Comput. Mater. Sci., 113, 66-74. https://doi.org/10.1016/j.commatsci.2015.11.029
  4. Azamat, J., Khataee, A. and Joo, S.W. (2016b), "Separation of copper and mercury as heavy metals from aqueous solution using functionalized boron nitride nanosheets: A theoretical study", J. Mol. Struct., 1108, 144-149. https://doi.org/10.1016/j.molstruc.2015.11.058
  5. Azamat, J., Sardroodi, J.J., Mansouri, K. and Poursoltani, L. (2016c), "Molecular dynamics simulation of transport of water/DMSO and water/acetone mixtures through boron nitride nanotube", Fluid Phase Equilib., 425, 230-236. https://doi.org/10.1016/j.fluid.2016.06.010
  6. Bai, D. (2011), "Size, morphology and temperature dependence of the thermal conductivity of single-walled silicon carbide nanotubes", Fuller. Nanotube Carbon Nanostruct., 19(4), 271-288. https://doi.org/10.1080/15363831003721823
  7. Barzegar, A., Mansouri, A. and Azamat, J. (2016), "Molecular dynamics simulation of non-covalent single-walled carbon nanotube functionalization with surfactant peptides", J. Mol. Graph. Modell., 64, 75-84. https://doi.org/10.1016/j.jmgm.2016.01.003
  8. Chen, F., Luo, G., Yang, W. andWang, Y. (2005), "Preparation and adsorption ability of polysulfone microcapsules containing modified chitosan gel", Tsinghua Sci. Technol., 10(5), 535-541. https://doi.org/10.1016/S1007-0214(05)70114-0
  9. Chen, G. (2004), "Electrochemical technologies in wastewater treatment", Sep. Purif. Technol., 38(1), 11-41. https://doi.org/10.1016/j.seppur.2003.10.006
  10. Corry, B. (2008), "Designing carbon nanotube membranes for efficient water desalination", J. Phys. Chem. B, 112(5), 1427-1434. https://doi.org/10.1021/jp709845u
  11. Csefalvay, E., Pauer, V. and Mizsey, P. (2009), "Recovery of copper from process waters by nanofiltration and reverse osmosis", Desalination, 240(1-3), 132-142. https://doi.org/10.1016/j.desal.2007.11.070
  12. Darden, T., York, D. and Pedersen, L. (1993), "Particle mesh ewald: An N.og(N) method for Ewald sums in large systems", J. Chem. Phys., 98(12), 10089-10092. https://doi.org/10.1063/1.464397
  13. Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S. and Chowdhury, Z.Z. (2014), "Carbon nanotube membranes for water purification: A bright future in water desalination", Desalination, 336, 97-109. https://doi.org/10.1016/j.desal.2013.12.026
  14. El Samrani, A.G., Lartiges, B.S. and Villieras, F. (2008), "Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization", Water Res., 42(4), 951-960. https://doi.org/10.1016/j.watres.2007.09.009
  15. Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O ., Snurr, R.Q., O'Keeffe, M., Kim, J. and Yaghi, O.M. (2010), "Ultrahigh porosity in metal-organic frameworks", Sci., 329(5990), 424-428. https://doi.org/10.1126/science.1192160
  16. Gao, J., Sun, S.P., Zhu, W.P. and Chung, T.S. (2014), "Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb2+ removal", J. Membr. Sci., 452, 300-310. https://doi.org/10.1016/j.memsci.2013.10.036
  17. Ghosh, P., Samanta, A.N. and Ray, S. (2011), "Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-fenton treatment and chemical precipitation", Desalination, 266(1), 213-217. https://doi.org/10.1016/j.desal.2010.08.029
  18. Golberg, D., Bando, Y., Tang, C.C. and Zhi, C.Y. (2007), "Boron nitride nanotubes", Adv. Mater., 19(18), 2413-2432. https://doi.org/10.1002/adma.200700179
  19. Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V. and Bachas, L.G. (2004), "Aligned multiwalled carbon nanotube membranes", Sci., 303(5654), 62-65. https://doi.org/10.1126/science.1092048
  20. Holt, J.K., Noy, A., Huser, T., Eaglesham, D. and Bakajin, O. (2004), "Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport", Nano Lett., 4(11), 2245-2250. https://doi.org/10.1021/nl048876h
  21. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2006), "Fast mass transport through sub-2-nanometer carbon nanotubes", Sci., 312(5776), 1034-1037. https://doi.org/10.1126/science.1126298
  22. Huang, K., Xiu, Y. and Zhu, H. (2013), "Removal of heavy metal ions from aqueous solution by chemically modified mangosteen pericarp", Desalin. Water Treat., 52(37-39), 7108-7116.
  23. Hummer, G., Rasaiah, J.C. and Noworyta, J.P. (2001), "Water conduction through the hydrophobic channel of a carbon nanotube", Nature, 414(6860), 188-190. https://doi.org/10.1038/35102535
  24. Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: Visual molecular dynamics", J. Mol. Graph., 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  25. Jia, Y., Zhuang, G. and Wang, J. (2012), "Electric field induced silicon carbide nanotubes: A promising gas sensor for detecting SO2", J. Phys. D Appl. Phys., 45(6), 065305. https://doi.org/10.1088/0022-3727/45/6/065305
  26. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L. (1983), "Comparison of simple potential functions for simulating liquid water", J. Chem. Phys., 79(2), 926-935. https://doi.org/10.1063/1.445869
  27. Kjellander, R. and Greberg, H. (1998), "Mechanisms behind concentration profiles illustrated by charge and concentration distributions around ions in double layers", J. Electroanal. Chem., 450(2), 233-251. https://doi.org/10.1016/S0022-0728(97)00641-4
  28. Li, P., Roberts, B.P., Chakravorty, D.K. and Merz, K.M. (2013), "Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent", J. Chem. Theory Comput., 9(6), 2733-2748. https://doi.org/10.1021/ct400146w
  29. Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes", Nature, 438(7064), 44. https://doi.org/10.1038/438044a
  30. Menon, M., Richter, E., Mavrandonakis, A., Froudakis, G. and Andriotis, A.N. (2004), "Structure and stability of SiC nanotubes", Phys. Rev. B Condens. Matter, 69(11), 115322. https://doi.org/10.1103/PhysRevB.69.115322
  31. Mpourmpakis, G., Froudakis, G.E., Lithoxoos, G.P. and Samios, J. (2006), "SiC nanotubes: A novel material for hydrogen storage", Nano Lett., 6(8), 1581-1583. https://doi.org/10.1021/nl0603911
  32. Pham-Huu, C., Keller, N., Ehret, G. and Ledoux, M.J. (2001), "The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential", J. Catal., 200(2), 400-410. https://doi.org/10.1006/jcat.2001.3216
  33. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L. and Schulten, K. (2005), "Scalable molecular dynamics with NAMD", J. Comput. Chem., 26(16), 1781-1802. https://doi.org/10.1002/jcc.20289
  34. Richards, L.A., Richards, B.S., Corry, B. and Schafer, A.I. (2013), "Experimental energy barriers to anions transporting through nanofiltration membranes", Environ. Sci. Technol., 47(4), 1968-1976. https://doi.org/10.1021/es303925r
  35. Roux, B. (1995), "The calculation of the potential of mean force using computer simulations", Comput. Phys. Commun., 91(1-3), 275-282. https://doi.org/10.1016/0010-4655(95)00053-I
  36. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. and Montgomery, J.A. (1993), "General atomic and molecular electronic structure system", J. Comput. Chem., 14(11), 1347-1363. https://doi.org/10.1002/jcc.540141112
  37. Shim, Y., Jung, Y. and Kim, H.J. (2011), "Carbon nanotubes in benzene: Internal and external solvation", Phys. Chem. Chem. Phys., 13(9), 3969-3978. https://doi.org/10.1039/c0cp01845g
  38. Tang, D. and Kim, D. (2014), "Temperature effect on ion selectivity of potassium and sodium ions in solution", Chem. Phys., 428, 14-18. https://doi.org/10.1016/j.chemphys.2013.10.018
  39. Thomas, M., Corry, B. and Hilder, T.A. (2014), "What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation?", Small, 10(8), 1453-1465. https://doi.org/10.1002/smll.201302968
  40. Won, C.Y. and Aluru, N.R. (2007), "Water permeation through a subnanometer boron nitride nanotube", J. Am. Chem. Soc., 129(10), 2748-2749. https://doi.org/10.1021/ja0687318
  41. Won, C.Y. and Aluru, N.R. (2009), "A chloride ion-selective boron nitride nanotube", Chem. Phys. Lett., 478(4), 185-190. https://doi.org/10.1016/j.cplett.2009.07.064
  42. Yanagisawa, H., Matsumoto, Y. and Machida, M. (2010), "Adsorption of Zn(II) and Cd(II) ions onto magnesium and activated carbon composite in aqueous solution", Appl. Surf. Sci., 256(6), 1619-1623. https://doi.org/10.1016/j.apsusc.2009.10.010
  43. Zhang, F.S. and Itoh, H. (2006), "Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent", Chemosphere, 65(1), 125-131. https://doi.org/10.1016/j.chemosphere.2006.02.027
  44. Zhao, J.X. and Ding, Y.H. (2009), "Can silicon carbide nanotubes sense carbon dioxide?", J. Chem. Theor. Comput., 5(4), 1099-1105. https://doi.org/10.1021/ct9000069

Cited by

  1. Adsorption of Gold(I) and Gold(III) Using Multiwalled Carbon Nanotubes vol.8, pp.11, 2018, https://doi.org/10.3390/app8112264