• Title/Summary/Keyword: ion separation

Search Result 555, Processing Time 0.03 seconds

Solvent Effect on the Dynamics of Radical Ion Pair Separation

  • Han, Chul-Hee
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 2001
  • Picosecond absorption spectroscopy has been employed in the study of the solvent dynamics of 1, 2, 4, 5-tetracyanobenzene/biphenyl derivative radical ion pairs, and the resulting rates of radical ion pair separation are faster in acetonitrile than in dichloromethane. In an effort to account quantitatively for such solvent effect on the rate of radical ion pair separation, an equation for the rate of radical ion pair separation is introduced, in which the rate depends exponentially on the electrostatic interaction energy in the radical ion pair. In our analysis of the types of electrostatic interaction energy based on the conducting spheres in dielectric continuum was chosen, and the rate equation employing this electrostatic energy provided information on the distance on the distance of radical ion pair separation and solvation energy of the radical ion pair, thereby providing quantitative explanation for the observed solvent effect on the rate of radical ion pair sepaaration.

  • PDF

Chromatographic Enrichment of Lithium Isotopes by Hydrous Manganese(IV) Oxide

  • Kim, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.503-506
    • /
    • 2001
  • Separation of lithium isotopes was investigated by chemical ion exchange with a hydrous manganese(IV) oxide ion exchanger using an elution chromatography. The capacity of manganese(IV) oxide ion exchanger was 0.5 meq/g. One molar CH3COO Na solution was used as an eluent. The heavier isotope of lithium was enriched in the solution phase, while the lighter isotope was enriched in the ion exchanger phase. The separation factor was calculated according to the method of Glueckauf from the elution curve and isotopic assays. The single stage separation factor of lithium isotope pair fractionation was 1.021.

Separation of Lithium Isotopes by Tetraazamacrocycles Tethered to Merrifield Peptide Resin

  • Jeon, Youn-Seok;Jang, Nak-Han;Kang, Byung-Moo;Jeon, Young-Shin;Kim, Chang-Suk;Choi, Ki-Young;Ryu, Hai-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.451-456
    • /
    • 2007
  • Tetraazamacrocyclic ion exchangers tethered to Merrifield peptide resin (DTDM, TTTM) were prepared and the ion exchange capacity of these was characterized. The isotope separation of lithium was determined using breakthrough method of column chromatography. The isotope separation coefficient was strongly dependent on the ligand structure by Glueckauf's theory. We found that the isotope separation coefficients were increased as the values of distribution coefficients were increased. In this experiment the lighter isotope, 6Li was enriched in the resin phase, while the heavier isotope, 7Li in the solution phase. The ion radius of lighter isotope, 6Li was shorter than the heavier isotope, 7Li. The hydration number of lithium ion with the same charge became small as mass number was decreased. Because 6Li was more strongly retained in the resin than 7Li, the isotopes of lithium were separated with subsequent enrichment in the resin phase.

Chromatographic Separation of Lithum Isotopes by Hydrous Managanese(Ⅳ) Oxide (가수된 산화 망간(Ⅳ)에 의한 리튬 동위원소의 크로마토그래피적 분리)

  • Kim, Dong Won
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.219-222
    • /
    • 2001
  • Separation of lithium isotopes was investigated by chemical ion exchange with a hydrous manganese(IV) oxide ion exchanger using an elution chromatography. The capacity of manganese(IV) oxide ion exchanger was 0.5 meq/g. The heavier lithium isotope was enriched in the solution phase, while the lighter isotope was enriched in the ion exchanger phase. The separation factor was determined according to the method of Glueckauf from the elution curve and isotopic assays. The separation factor of $^6Li^+$-$^7Li^+$ isotope pair fractionation was 1.018.

  • PDF

Transport of Zinc Ion in a Contained Liquid Membrane Permeator with Two Micro-Porous Films (지지막을 이용하는 액막 추출기 내에서 아연 이온의 이동)

  • 주창식;이석희;이민규;홍성수;하홍두;정석기
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.159-164
    • /
    • 2000
  • For the purpose of development of a liquid membrane permeator which separates metal ions from aqueous solutions continuously and effectively, a continuous membrane permeator with the membrane solution trapped between extraction and stripping phases by two micro-porous hydrophilic films was manufactured. Experimental researches on the separation of zinc ion from aqueous solutions were performed in the liquid membrane permeator with 30 vol % D2EHPA solution in kerosine as liquid membrane. As results, the liquid membrane permeator separates zinc ion from aqueous solutions continuously and effectively in the wide range of operating conditions. A simple mass transfer rate model using equilibrium constant of the extraction reaction for the system used were proposed, and the model was compared with experimental results of separation of zinc ion in the permeator. And the effects of operating factors, such as space time, pH of extraction solution, extraction temperature, on the separation rate of zinc ion in the permeator were experimentally examined.

  • PDF

The Separation of Magnesium Isotopes by Tetraazamacrocycles Tethered to Merrifield Peptide Resin(TDM, TPM) (테트라아자 거대고리화합물(TDM, TPM)을 이용한 마그네슘동위원소의 분리에 관한 연구)

  • Jeon, Youn-Seok;Ryu, Hai-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4696-4703
    • /
    • 2011
  • Tetraazamacrocyclic ion-exchangers, 1,4,8,11-tetraazacyclotetradecane bonded Merrifield peptide resin(TDM), 1,4,8,12-tetraazacyclopentadecane bonded Merrifield peptide resin(TPM) were prepared, and the ion-exchange capacity of these TDM and TPM were characterized. The distribution coefficients in various conc. of NH4Cl for magnesium with ion exchangers were determined by using the batch method. We found the isotope separation factors on new prepared tetraazamacrocyclic ion-exchangers bonded Merrifield peptide resin(TDM, TPM). The isotope separation of magnesium was determined by using of breakthrough method of column chromatography.

A Study on Temperature and Retaining Ion Effect on the Separation of Lanthanides (란탄계열원소들의 양이온교환분리에서의 온도와 보유이온의 영향에 관한 연구)

  • Young-Gu Ha;Bong-Il Ji
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.601-606
    • /
    • 1989
  • The effects of temperature and retaining ion on the separation factor (${\alpha}$) and distribution ratio (D) of some lanthanides ($Pr^{3+},\;Nd^{3+},\;Sm^{3+},\;and\;Er^{3+}$) have been studied in the EDTA solution as an elutant by using Amberite IR 120 + resin. The retaining ions on the resin were ${NH_4}^+,\;Na^+,\;K^+,\;Mg^{2+},\;Ca^{2+},\;Zn^{2+}$and $Ce^{3+}$. Separation factor of Nd/Pr is much improved by using $Ce^{3+}$ as retaining ion. The distribution ratios were decreased with the increase of temperature, but separation factors did not always increase with the increase of temperature. However, in the case of $Ce^{3+}$ as retaining ion, separation factors of Nd/Pr and Sm/Nd were increased with the increasing of temperature. And also in the case of $Zn^{2+}$ as retaining ion, separation factor of Er/Sm was increased with the increasing of temperature.

  • PDF

The study on the separation characteristics of heavy metal ion by inorganic oxides and ion exchange resin (무기산화물 및 이온교환수지에 의한중금속 이온 분리특성 연구)

  • Dan, Cheol Ho;Kim, eong Ho;Yang, Hyun Soo
    • Clean Technology
    • /
    • v.12 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • The effectiveness of inorganic oxides (DT-30), anionic exchange resin (DT-60) and carbon absorbent (DT-80, DT-90) on the equilibrium and continuous separation characteristics and removal of cobalt, cesium and iodide ion in the waste water was investigated. As a result, DT-30, DT-80 or DT-90, and DT-60 showed excellent separation properties on the cesium, cobalt and iodide respectively. In the equilibrium experiment, the adsorption amount of cesium for DT-30 increased with temperature, but increasd largely with pH. In case of DT-80, adsorption of cobalt was depended on pH but was not influenced by temperature. In the continuous system by passing a heavy metal ion solution through the ion exchange tower, DT-30, DT-90 and DT-60 showed good separation characteristic for cesium, cobalt and iodide respectively. In this case, separation characterization of DT-30 on the cesium and of DT-60 on the iodide were better than that of DT-90 on the cobalt. From the experiment on the effect of impurities on the ion exchange characteristics, impurities such as surfactant and oil did not influence the efficiency of DT-90. In the mean while, ion separation capacity of DT-30 were decreased largely by impurities such as surfactant and oil. Also, surfactant had a strong influence on the effectiveness of DT-60. Accordingly, it turned out to be very important thing that impurities should be removed in the preprocessing stage.

  • PDF

Ion-Exchange Separation of Thorium in Monazite (이온交換樹指에 依한 토리움分離)

  • Choi, Han-Suk;Ha, Young-Gu
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.56-59
    • /
    • 1961
  • Ion exchange procedure was studied for the separation of thorium from the acidic solution obtained by means of decomposition of monazite with alkali solution. Present cation exchange method consists of adsorption of cations from the sample solution (ca. 0.6N HCl acidic) onto Amberlite IR-120 resin, elution of all of the rare earth cations with 700 ml. of 2N Hydrochloric acid, and recovery of the thorium by elution with 200ml. of 6N sulfaric acid. Thorium recovery by the ion-exchange method mentioned above, was quantitative, and it is concluded that this ion-exchange method may be used not only for industrial separation of thorium from rare earths but also for quantitative determination of thorium with relative error, ${\pm}1.0.$.

  • PDF

Rejection Characteristics of Various Heavy Metals by Low-pressure Nanofiltration (저압나노여과에 의한 각종 중금속의 제거 특성)

  • Oh, Jeong-Ik;Kim, Han-Seung;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.493-499
    • /
    • 2004
  • Rejection characteristics of heavy metals by nanofiltration membranes were investigated. Nanofiltration membranes rejected heavy metals much better than chloride, sulfate and TOC, of which concentration in synthetic wastewater was higher than that of heavy metals. To consider rejection characteristics of various metals by nanofiltration membranes, separation coefficient, which is the ratio of the metal permeation rate to the chloride ion or TOC permeation rate, was introduced. In spite of different materials and different nominal salt rejection of nanofiltration membrane used, the separation coefficients of metals were nearly the same. In particular, the separation coefficient of arsenic against chloride ion and TOC was larger than any other separation coefficient of heavy metals. These phenomena were observed in the relationship between the molar conductivity and the separation coefficient for heavy metals.