DOI QR코드

DOI QR Code

Vaisman-Gray Manifold of Pointwise Holomorphic Sectional Conharmonic Tensor

  • Abood, Habeeb Mtashar (Department of Mathematics, College of Education for Pure Sciences, University of Basrah) ;
  • Abdulameer, Yasir Ahmed (Department of Mathematics, College of Education for Pure Sciences, University of Basrah)
  • Received : 2017.10.29
  • Accepted : 2018.08.20
  • Published : 2018.12.23

Abstract

The purpose of the present paper is to discuss the geometrical properties of the Vaisman-Gray manifold (VG-manifold) of a pointwise holomorphic sectional conharmonic tensor (PHT-tensor). Furthermore, the necessary and sufficient conditions required for the VG-manifold to admit such a PHT-tensor have been determined. In particular, under certain conditions, we have established that the aforementioned manifold was an Einstein manifold.

Keywords

References

  1. H. M. Abood and Y. A. Abdulameer, Conharmonically flat Vaisman-Gray manifold, Amer. J. Math. Stat., 7(1)(2017), 38-43.
  2. L. K. Ali, On almost Kahler manifold of a pointwise holomorphic sectional curvature tensor, Master's thesis, University of Basra, College of Education, 2008.
  3. M. Banaru, A new characterization of the Gray-Hervella classes of almost Hermitian manifolds, 8th International Conference on Differential Geometry and its Applications, Opava-Czech Republic, August 27-31, 2001.
  4. A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Math. Pure Appl., 123(1980), 35-58. https://doi.org/10.1007/BF01796539
  5. L. A. Ignatochkina, Vaisman-Gray manifolds with a J-nvariant conformal curvature tensor, Sb. Math., 194(2)(2003), 225-235. https://doi.org/10.1070/SM2003v194n02ABEH000713
  6. Y. Ishi, On conharmonic transformations, Tensor (N.S.), 7(1957), 73-80.
  7. Q. Khan, On conharmonically and special weakly Ricci symmetric Sasakian manifolds, Novi Sad J. Math., 34(1)(2004), 71-77.
  8. V. F. Kirichenko, Certain properties of tensors on K-spaces, Vestnik Moskov. Univ. Ser. I Mat. Meh., 30(1975), 78-85.
  9. V. F. Kirichenko, K-spaces of constant type, Sibirsk. Mat. Z., 17(1976), 282-289.
  10. V. F. Kirichenko, K-spaces of constant holomorphic sectional curvature, Mat. Zametki, 19(5)(1976), 805-814.
  11. V. F. Kirichenko, The differential geometry of K-spaces, Problems of Geometry, 8(1977), 139-161.
  12. V. F. Kirichenko and O. E. Arseneva, Self-dual geometry of generelized Hermitian surfaces, Sb. Math., 189(1)(1998), 19-44. https://doi.org/10.1070/SM1998v189n01ABEH000288
  13. V. F. Kirichenko and A. A. Shikhab, On the geometry of conharmonic curvature tensor of nearly Kahler manifolds, J. Math. Sci. (N.Y.), 177(2011), 675-683. https://doi.org/10.1007/s10958-011-0495-3
  14. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, John Wily and Sons, 1963.
  15. J. L. Kozal, Varicies Kahlerian-notes, Sao Paolo, 1957.
  16. A. Z. Petrov, Einstein space, Phys-Math. Letr. Moscow, 1961.
  17. P. K. Rachevski, Riemannian geometry and tensor analysis, M. Nauka, 1964.
  18. E. V. Tretiakova, Curvature identities for almost Kahler manifold, VINITE, Moscow, No. 208-B99, 1999.
  19. F. O. Zengin and A. Y. Tasci, Pseudo Conharmonically Symmetric Manifolds, Eur. J. Pure Appl. Math., 7(3)(2014), 246-255.