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ABSTRACT. The purpose of the present paper is to discuss the geometrical properties of
the Vaisman-Gray manifold (V' G-manifold) of a pointwise holomorphic sectional conhar-
monic tensor (PHT-tensor). Furthermore, the necessary and sufficient conditions required
for the VG-manifold to admit such a PHT-tensor have been determined. In particular,
under certain conditions, we have established that the aforementioned manifold was an
Einstein manifold.

1. Introduction

The classification of the almost Hermitian structures was introduced by Gray
and Hervella [4]. These structures have been categorized into sixteen different
classes. Moreover, it has been found that the condition for each one of them depends
on a Kozel’s operator method [15].

On the other hand, there is another significant classification method for the
almost Hermitian structures that were introduced by Kirichenko. This method
depends on the principle fibre bundle space of all complex frames of a smooth
manifold M with the unitary structure group U(n). This space is called an adjoined
G-structure space. For further information, refer to the following citations: [3], [8],
[9], [10], and [11].

One of the interesting classes of almost Hermitian structures is a V' G-manifold,
which is denoted by W7 & Wy, where W7 and W, denote the nearly Kéhler manifold
and the locally conformal Kahler manifold, respectively.

It is a well-known fact that the harmonic function is one whose Laplacian van-
ishes. In general, it is not a conformal transformation harmonic function. With
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regard to this fact, Ishi [6] introduced a tensor that remained invariant under a con-
harmonic transformation for an n-dimensional Riemannian manifold. In addition,
Khan [7] determined the properties of the conharmonically flat Sasakian manifolds.
Moreover, it has been proved that a special weakly Ricci symmetric Sasakian man-
ifold is an Einstein manifold. Subsequently, Shihab [13] went on to determine the
geometrical properties of the conharmonic curvature tensor belonging to the nearly
Kahler manifold. Furthermore, it has been established that a Kahler manifold with
a dimension greater than four is a conharmonic parakahler manifold if, and only
if, it has a flat Ricci tensor. On the other hand, Zengin and Tasci [19] studied a
pseudo conharmonically symmetric manifold. In particular, they proved that the
aforementioned manifold with a non-zero scalar curvature has a closed associated
1-form. Lastly, Abood and Abdulameer [1] considered the conharmonically flat V G-
manifold, exclusively and identified the necessary and sufficient conditions required
for the V G-manifold to be an Einstein manifold.

In this article, we have employed the adjoined G-structure space to study the
geometry of the VG-manifold that corresponds with a PHT-tensor.

2. Preliminaries

Let M be a smooth manifold of even dimension, C°°(M) be an algebra of
smooth functions on M, and X (M) be the module of smooth vector fields on M. An
almost Hermitian manifold (AH-manifold) is a triple {M, J,g = (.,.)} , where M is
a smooth manifold, J is an almost complex structure, and g = (., .) is a Riemannian
metric, such that the equality (JX,JY) = (X,Y) holds for X,Y € X(M).

Suppose that T);(M) is the complexification of a tangent space T),(M) at the
point p € M and {ey,...,en, Jeq, ..., Je, } is a real adapted basis of AH-manifold.
Then, in the module T7(M), there exists a basis given by {e1,...,en,&1,...,én}
which is called as an adapted basis, where, ¢, = o(eq), €0 = (es), and 0,0
are two endomorphisms in the module X¢(M), which are given by o = %(zd —
V—1J¢) and 6 = —1(id + v/=1J°), respectively, such that X¢(M) and J¢ are
the complexifications of X (M) and J, respectively. The corresponding frame of
this basis is {p;e1,...€n,€1,...,En}. Suppose that the indexes 4, j,k, and [ are in
the range 1,2,...,2n and the indexes a,b,c,d and f are in the range 1,2,...,n.
Moreover, a = a + n.

For a manifold M, it is a well known that the given A H-structure is equivalent to
the given G-structure space in the principle fibre bundle of all complex frames of M
with the unitary structure group U(n). Whereas, in the adjoined G-structure space,
the components matrices of the almost complex structure J and the Riemannian
metric g are given as follows:

(2.1) (Ji) = ( \/?I" _\/E—HH ) (9i5) = ( 1(1 _oln )

where I, is the identity matrix of order n.
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Definition 2.1.([14]) A Riemannian curvature tensor R of a smooth manifold M
is a 4-covariant tensor R : T,(M) x T,(M) x T,(M) x T,(M) — R which is given
by

R(X,Y,Z,W) = g(R(X,Y)Z, W)
Moreover, the following properties:

(1) R(X,Y,Z,W)=—-R(Y,X,Z, W) ;

(2) R(X,Y,Z,W)=—-R(X,Y,W, Z);
(3) R(X,Y,Z,W)=R(Z,W,X,Y);
(4) R(X,Y.Z,W)+ R(X,Z,W.Y) + R(X,W,Y, Z) =0

hold, where R(X,Y)Z = ([Vx,Vy] - Vixy])Z; X, Y, Z,W € T,(M).

Definition 2.2.([17]) A Ricci tensor is a tensor of type (2,0) which is a contracting
of the Riemannian curvature tensor R, that is

_pk K
rij = R = 9" Ryiji-

Definition 2.3.([6]) A conharmonic tensor of an AH-manifold is a tensor T of
type (4,0) which is given by the following form:

Tijri = Riji — (ragix — rj19ik + TjkGi — Tikgj1)

2(n—1)

where r, R and g are respectively the Ricci tensor, the Riemannian curvature ten-
sor, and the Riemannian metric. Similar to the property of Riemannian curvature
tensor, the conharmonic tensor has the following property:

Tijri = —Tjir = —Tijik = Thaij-

Definition 2.4. An AH-manifold is called a conharmonically flat if the conhar-
monic tensor vanishes.

Definition 2.5.([3]) In the adjoined G-structure space, an AH-manifold {M, J, g =
(.,)} is called a Vaisman-Gray manifold (VG-manifold) if B¢ = —Bbc B =
a[“ég]; a locally conformal Kihler manifold (LC K-manifold) if B¢ = 0 and B =
alesl ; and a nearly Kdhler manifold (N K -manifold) if Be*¢ = —Bb¢ and B3 = 0,
v—1 v—1 1
where B¢ = X ——j¢ B — Y __jJo o= _— _§Fo.Jisa Lie form, F is a
2 [b,é] 2 b,c] n—1
Kahler form which is given by F(X,Y) = (JX,Y), ¢ is a codrivative; X,Y € X (M)
and the bracket [ ] denotes the antisymmetric operation.

Theorem 2.6.([3]) In the adjoined G-structure space, the components of the Rie-
mannian curvature tensor of the VG-manifold are given by the following forms:
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1) Raped = 2(Bapjed) + A Byjca);

(1) R

(2) Rapea = QAZCd;
3) R 2(— B Byea + 0f¢6,);
(4

abed — [e™d

) abed — Agg + Bathth - Bg ng’

where, {Ag.,} are some functions on the adjoined G-structure space, {A%} are a
system of functions in the adjoined G-structure space that are symmetric by the
lower and upper indices, which are called the components of the holomorphic sec-
tional curvature tensor.

The functions {al, ab} are the components of the covariant differential structure
tensor of the first and second type, and {aqp,a®} are the components of the Lie
form on the adjoined G-structure space such that:

b

b
dog + apw,

= agwb + agpwland da® — o wy = agwb + aabwb,

where, {w®,w,} are the components of mizture form and {w§} are the components of
the Riemannian connection of the metric g. Other components of the Riemannian
curvature tensor R can be obtained by the property of symmetry for R.

Theorem 2.7.([5]) In the adjoined G-structure space, the components of Ricci ten-
sor of the VG-manifold are given by the following forms:

(1) rap = 52 (b + Qpa + Qan);
(2) rap = 3B“" By, — APe + "7_1 (a®ap — aPay,) — 70¢h5“ (n—2)ag.

Whereas, the other components are conjugate to the above components.

The next theorem gives the components of the conharmonic tensor of the VG-
manifold in the adjoined G-structure space.

Theorem 2.8.([1]) In the adjoined G-structure space, the components of the con-
harmonic tensor of the VG-manifold are given by the following forms:

(1) Tabed = 2(Bab[cd] + a[aBb]cd);
(2) Tabea = 2454 + 5571y (16208 — T0c0);

(8) Typoq = 2(—=B ™ Biea + aft6,)) — 115 (r10d + rl63);

le

a adh a acd
(4) abed — Abg +B a Bhbc BChB;fb + ﬁ(rgc 617)))’

Whereas, the other components can be obtained by the conjugate operation regarding
the above components.

Definition 2.9.([16]) A Riemannian manifold is called an Finstein manifold if the
Ricci tensor satisfies the equation 7;; = Cg;;, where C' is an Einstein constant.
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Definition 2.10.([12]) An AH-manifold has a J-invariant Ricci tensor if Jor =
rodJ.

The following Lemma shows the invariant Ricci tensor in the adjoined G-
structure space.

Lemma 2.11.([18]) An AH-manifold has a J-invariant Ricci tensor if, and only
if, the equality ¢ = rq, = 0 holds.

Definition 2.12.([8]) Define two endomorphisms on 70(V') as follows:

T

(1) Symmetric mapping Sym : 72(V) — 72(V) by:

1
sym(t)(vl, -~-;'Ur) = g Z t(’UU(l), ...,’UJ(T)).
" oES,

(2) Antisymmetric mapping Alt : 72(V) — 72(V) by:

1
Al V1, 0r) = — > = (@)t (Ve (1)s - Va(r))-

’ €S,

The symbols () and [ ] are usually used to denote the symmetric and antisym-
metric respectively.

3. The main results

Definition 3.1. Let M be an AH-manifold. A holomorphic sectional conharmonic
(HT-tensor) of a manifold M in the direction X € X(M),X # 0 is a function
h(X), which is given by

(T(X,JX,X,JX,)) = MX|X[* X[ = (X, X).

Definition 3.2. A manifold M has a pointwise holomorphic sectional conharmonic
(PHT- tensor) if h does not depend on X, then this means

(T(X,JX, X, JX,)) = | X|* X € X(M), heC=(M).

Lemma 3.3.([2]) If M is an AH-manifold of PHT- tensor, then the equation
| X|[* = 262X XX, X, holds, where 6% = 5205 4 040 is a Kroneker delta of the
second type.

The necessary condition for a V G-manifold to be a PHT-tensor is summarized
in the following theorem.

Theorem 3.4. Suppose that M is a VG-manifold of the conharmonic tensor and
the J-invariant Ricci tenor. Then, the necessary condition for a VG-manifold to

793



794 H. M. Abood, Y. A. Abdulameer

be a PHT- tensor is for the components of the HT-curvature tensor to satisfy the
following condition:

C < 1 b cc
A%y = 500+ B Bly — ——=(r(z07).

Proof. Suppose that M is a V G-manifold of the PHT-tensor.
According to the Definition 3.2, we have

(T(X,JX,X,JX,)) = || X||*.
By using the Lemma 3.3, it follows that
(T(X,JX, X, JX,)) = 202X XX, X...
In the adjoined G-structure space, we have
Ty X (XY XE(TX) = Topea X (JX)PX(TX) 4 Topea X (JX)PXE(TX)?
4T d X (T X)X (TX) 4 T, X (TX)PXE(TX)

According to the properties (JX)? = v/—1X% and (JX)% = —/—1X?, it follows
that
Tijlei(JX)ij(']X)l = abchaXchXd — TabaanXbXéXd
aybycyd aybyeéyvd
F T g X XXX+ T s X XXX
T g XX XX+ T, XOXP XX
aybycyd aybyeéyvd
T g X XXX =T ;X XXX
- T&bchdeXch - T@b@dXdeXéXd
T, XX XX 4T, XOx XX
aybyeyd aybyeyd
F T g X XXX+ T, X XXX
+ T g X XXX — T XX XX,
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By using the properties of the conharmonic tensor, we get the following:
Ty X (JX) X (TX) = ~Tapea X°XP XX — 4T, XOXOXO X1
— ATopea X XXX 4 AT ;. XX XX
— T XX XX 2T, XX XX
=2e625 XXX, X...

Making use of the Theorem 2.3, we obtain

— 2(Bapjed) + Vo Byjea) X X XX — 4(24%° 4 (rifach)) x o xb xe x1

1
2(n—1)

4(248 , + (rpad2 — rpe08)) XXX X4

1
2(n—1)

c c c 1 b cc aybyeé
A(AL + B"" Braa — B By + ——(r Pl X X XX

2(Bab[cd] + a[aBb]cd)X&Xl;XéX& + 2(2(_Bathhcd + Q{Z(SZ]])
1 a a & b
- —(rg st 4 rls2ly) xoxPxe X
n_
= 2062 X XX, X...

Symmetrizing and antisymmetrizing the last equation by the indices (¢, d), we have

1 A
4 a a XaXbXCXd
<2(Tl N 1) (rbd(sc TbC(Sd))
4(A% + B Byaq — () X X XX
= 2062 X XX, X..

Since M has a J-invariant Ricci tensor, then

(b 50)

(Abd—‘-Bb(‘hBh d— B(‘hBhd + ( (d )

DX XP XX = 2050 X XX, X,..

Symmetrizing by the indices (b, ¢), we deduce

1 c
A(A% + 5 L (B Byog + B Byog) — BBl + ()X X XX
=262 XXX, X,
A(A% — BBl + 1( rosd )X XXX = 20805 X XX X,

C C 1 b a a
4(A% — BBl + ——(r BIONX XXX, = 20055X XX, X,

1
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c c 1 b cc C Sbe
Aoy — BBy + m(rgd%%) = §5Zd-
Therefore,
be _ €5be chpb L (b sc)
Aag = 50aa + Ba" Bra o] (r(494)) =

Theorem 3.5. If M is a VG-manifold of the PHT-tensor, then M is an NK-
mamnifold.

Proof. Suppose that M is a manifold of the PHT-tensor. According to the Theorem
3.4, we get

Aga — B Big +

b cc C <pe
(r{y02) = 500

n—1

Symmetrizing and antisymmetrizing the above equation by the indices (b,c) conse-
quently, we get
BB, = 0.

Contracting the last equation by the indices (a,b) and (¢, d), it follows that
BB, =0 BB =0e > B> =0« B =0.
a,d,h
Therefore, according to the Definition 2.5, M is an N K-manifold. O

Theorem 3.6. Let M be a VG-manifold of the PHT -tensor with a flat holomorphic
sectional curvature tensor and J-invariant Ricci tensor. Then, M is an Einstein
manifold.

Proof. Suppose thatM is a V G-manifold of the PHT-curvature tensor. According
to the Theorem 3.4, we get

c c 1 b cc C Sbe
Aoy — B Bjig + m(ngfsa%) = §5Zd-

Making use of the Theorem 3.5 consequently, we obtain

1 Cx
be (bge)y be
Aad + m(r(déz)) = iéad.

Since M has flat holomorphic sectional tensor, then

L (bge)y _ Csbe
n_1 (T(déa)) = iéada

b sc cgby E b sc b sc
2(TL _ 1) (rdtsa + Ta(sd) - 2(611511 + 5d5a)'
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Contracting by the indices (d, ¢), we have

1
1
m(ﬂi +10)
1 b
(n-1)°
g
;

797

(004 + 6a0%).

(ndq + 8q).

N N|O

S +1),

e
= 5 5a,
= ed®.

Since M has a J-invariant Ricci tensor, then M is an Einstein manifold. O

Theorem 3.7. Let M be a VG-manifold of the PHT -tensor with a J-invariant
Ricci tensor, then M is an Einstein manifold if, and only if, A% = ¢160, where ¢,
15 a constant.

Proof. Suppose that M is a VG-manifold of the PHT-tensor. According to the
Theorem 3.4, we have

Al BBy + L (ra9) = S8,
By using the Theorem 3.5, we obtain
Al () = S8,
n—1" a9
A+ g s 1500 = 53t
AL+ s (4 ) = 5005 + 1),

Contracting by the indices (c,d), it follows that

A+ gy oy 1805 + 7500 = 500 + 008%),
c C
Azc + 2(7’l — 1) (Tg + TZ) = i(ndg + 52)’
1 cb
be b _ a
Aac+(n_1)ra_ 9 (n+1)7
St 1
1 be _ COq 1) — b.
(3 ) ac 9 (n+ ) (nil)ra
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Since M is an Einstein manifold, then

et

Abe = —a 1) — ——ed?
ac 2 (n + ) (n _ 1) € a?’

1
Abe = (St +1)— 5

Abe = ¢, 60,
Conversely, by using the equation (3.1), we have
S 1

Abc _ Cogq 1) — b.
ac 2 (n + ) (n _ 1)7.0,

Since A% = ¢;8%, then

co? 1
5b — _a 1 _ b
1 b ¢ b
={= 1)—c1}é
b (c(n+1)=3¢1)(n — 1)(52,
2
b = ed®.
Since M has a J-invariant Ricci tensor, then M is an Einstein manifold. O

4. Conclusions

This article clearly aimed to study the geometrical properties of the VG-manifold of
the pointwise holomorphic sectional curvature conharmonic tensor. We have found
out the necessary conditions for the VG-manifold to be a manifold of the pointwise
holomorphic sectional conharmonic tensor. Furthermore, we have formulated an
interesting theoretical physical application. In particular, we have concluded the
necessary and sufficient conditions for a VG-manifold to be an Einstein manifold.
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