
KYUNGPOOK Math. J. 58(2018), 789-799

https://doi.org/10.5666/KMJ.2018.58.4.789

pISSN 1225-6951 eISSN 0454-8124

c⃝ Kyungpook Mathematical Journal

Vaisman-Gray Manifold of Pointwise Holomorphic Sectional
Conharmonic Tensor

Habeeb Mtashar Abood∗ and Yasir Ahmed Abdulameer
Department of Mathematics,College of Education for Pure Sciences, University of
Basrah, Basrah, Iraq
e-mail : iraqsafwan2006@gmail.com and yasirmath2017@gmail.com

Abstract. The purpose of the present paper is to discuss the geometrical properties of

the Vaisman-Gray manifold (V G-manifold) of a pointwise holomorphic sectional conhar-

monic tensor (PHT -tensor). Furthermore, the necessary and sufficient conditions required

for the V G-manifold to admit such a PHT -tensor have been determined. In particular,

under certain conditions, we have established that the aforementioned manifold was an

Einstein manifold.

1. Introduction

The classification of the almost Hermitian structures was introduced by Gray
and Hervella [4]. These structures have been categorized into sixteen different
classes. Moreover, it has been found that the condition for each one of them depends
on a Kozel’s operator method [15].

On the other hand, there is another significant classification method for the
almost Hermitian structures that were introduced by Kirichenko. This method
depends on the principle fibre bundle space of all complex frames of a smooth
manifold M with the unitary structure group U(n). This space is called an adjoined
G-structure space. For further information, refer to the following citations: [3], [8],
[9], [10], and [11].

One of the interesting classes of almost Hermitian structures is a V G-manifold,
which is denoted by W1⊕W4, where W1 and W4 denote the nearly Kähler manifold
and the locally conformal Kähler manifold, respectively.

It is a well-known fact that the harmonic function is one whose Laplacian van-
ishes. In general, it is not a conformal transformation harmonic function. With
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regard to this fact, Ishi [6] introduced a tensor that remained invariant under a con-
harmonic transformation for an n-dimensional Riemannian manifold. In addition,
Khan [7] determined the properties of the conharmonically flat Sasakian manifolds.
Moreover, it has been proved that a special weakly Ricci symmetric Sasakian man-
ifold is an Einstein manifold. Subsequently, Shihab [13] went on to determine the
geometrical properties of the conharmonic curvature tensor belonging to the nearly
Kähler manifold. Furthermore, it has been established that a Kähler manifold with
a dimension greater than four is a conharmonic parakähler manifold if, and only
if, it has a flat Ricci tensor. On the other hand, Zengin and Tasci [19] studied a
pseudo conharmonically symmetric manifold. In particular, they proved that the
aforementioned manifold with a non-zero scalar curvature has a closed associated
1-form. Lastly, Abood and Abdulameer [1] considered the conharmonically flat V G-
manifold, exclusively and identified the necessary and sufficient conditions required
for the V G-manifold to be an Einstein manifold.

In this article, we have employed the adjoined G-structure space to study the
geometry of the VG-manifold that corresponds with a PHT -tensor.

2. Preliminaries

Let M be a smooth manifold of even dimension, C∞(M) be an algebra of
smooth functions on M , and X(M) be the module of smooth vector fields onM . An
almost Hermitian manifold (AH-manifold) is a triple {M,J, g = ⟨., .⟩} , where M is
a smooth manifold, J is an almost complex structure, and g = ⟨., .⟩ is a Riemannian
metric, such that the equality ⟨JX, JY ⟩ = ⟨X,Y ⟩ holds for X,Y ∈ X(M).

Suppose that T c
p (M) is the complexification of a tangent space Tp(M) at the

point p ∈ M and {e1, ..., en, Je1, ..., Jen} is a real adapted basis of AH-manifold.
Then, in the module T c

p (M), there exists a basis given by {ε1, ..., εn, ε̂1, ..., ε̂n}
which is called as an adapted basis, where, εa = σ(ea), ε̂a = σ̄(ea), and σ, σ̄
are two endomorphisms in the module Xc(M), which are given by σ = 1

2 (id −√
−1Jc) and σ̄ = −1

2 (id +
√
−1Jc), respectively, such that Xc(M) and Jc are

the complexifications of X(M) and J , respectively. The corresponding frame of
this basis is {p; ε1, . . . εn, ε̂1, . . . , ε̂n}. Suppose that the indexes i, j, k, and l are in
the range 1, 2, . . . , 2n and the indexes a, b, c, d and f are in the range 1, 2, . . . , n.
Moreover, â = a+ n.

For a manifoldM , it is a well known that the given AH-structure is equivalent to
the given G-structure space in the principle fibre bundle of all complex frames of M
with the unitary structure group U(n). Whereas, in the adjoined G-structure space,
the components matrices of the almost complex structure J and the Riemannian
metric g are given as follows:

(J i
j) =

( √
−1In 0
0 −

√
−1In

)
, (gij) =

(
0 −In
In 0

)
(2.1)

where In is the identity matrix of order n.
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Definition 2.1.([14]) A Riemannian curvature tensor R of a smooth manifold M
is a 4-covariant tensor R : Tp(M) × Tp(M) × Tp(M) × Tp(M) → R which is given
by

R(X,Y, Z,W ) = g(R(X,Y )Z,W )

Moreover, the following properties:

(1) R(X,Y, Z,W ) = −R(Y,X,Z,W ) ;

(2) R(X,Y, Z,W ) = −R(X,Y,W,Z);

(3) R(X,Y, Z,W ) = R(Z,W,X, Y );

(4) R(X,Y, Z,W ) +R(X,Z,W, Y ) +R(X,W, Y, Z) = 0

hold, where R(X,Y )Z = ([▽X ,▽Y ]− ▽[X,Y ])Z;X,Y, Z,W ∈ Tp(M).

Definition 2.2.([17]) A Ricci tensor is a tensor of type (2, 0) which is a contracting
of the Riemannian curvature tensor R, that is

rij = Rk
ijk = gklRkijl.

Definition 2.3.([6]) A conharmonic tensor of an AH-manifold is a tensor T of
type (4, 0) which is given by the following form:

Tijkl = Rijkl −
1

2(n− 1)
(rilgjk − rjlgik + rjkgil − rikgjl)

where r,R and g are respectively the Ricci tensor, the Riemannian curvature ten-
sor, and the Riemannian metric. Similar to the property of Riemannian curvature
tensor, the conharmonic tensor has the following property:

Tijkl = −Tjikl = −Tijlk = Tklij .

Definition 2.4. An AH-manifold is called a conharmonically flat if the conhar-
monic tensor vanishes.

Definition 2.5.([3]) In the adjoined G-structure space, an AH-manifold {M,J, g =
⟨., .⟩} is called a Vaisman-Gray manifold (V G-manifold) if Babc = −Bbac, Bab

c =

α[aδ
b]
c ; a locally conformal Kähler manifold (LCK-manifold) if Babc = 0 and Bab

c =

α[aδ
b]
c ; and a nearly Kähler manifold (NK-manifold) if Babc = −Bbac and Bab

c = 0,

where Babc =

√
−1

2
Ja
[b̂,ĉ]

, Bab
c =

√
−1

2
Ja
b̂,c]

, α =
1

(n− 1)
δF ◦ J is a Lie form, F is a

Kähler form which is given by F (X,Y ) = ⟨JX, Y ⟩, δ is a codrivative; X,Y ∈ X(M)
and the bracket [ ] denotes the antisymmetric operation.

Theorem 2.6.([3]) In the adjoined G-structure space, the components of the Rie-
mannian curvature tensor of the V G-manifold are given by the following forms:
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(1) Rabcd = 2(Bab[cd] + α[aBb]cd);

(2) Râbcd = 2Aa
bcd;

(3) Râb̂cd = 2(−BabhBhcd + α
[a
[cδ

b]
d]);

(4) Râbcd̂ = Aad
bc +BadhBhbc −Bah

c Bd
hb,

where, {Aa
bcd} are some functions on the adjoined G-structure space, {Aad

bc } are a
system of functions in the adjoined G-structure space that are symmetric by the
lower and upper indices, which are called the components of the holomorphic sec-
tional curvature tensor.

The functions {αa
b , α

b
a} are the components of the covariant differential structure

tensor of the first and second type, and {αab, α
ab} are the components of the Lie

form on the adjoined G-structure space such that:

dαa + αbω
b
a = αb

aωb + αabω
band dαa − αbωa

b = αa
bω

b + αabωb,

where, {ωa, ωa} are the components of mixture form and {ωa
b } are the components of

the Riemannian connection of the metric g. Other components of the Riemannian
curvature tensor R can be obtained by the property of symmetry for R.

Theorem 2.7.([5]) In the adjoined G-structure space, the components of Ricci ten-
sor of the V G-manifold are given by the following forms:

(1) rab =
1−n
2 (αab + αba + αaαb);

(2) râb = 3BcahBcbh −Aca
bc +

n−1
2 (αaαb − αhαh)− 1

2α
h
hδ

a
b + (n− 2)αa

b .

Whereas, the other components are conjugate to the above components.

The next theorem gives the components of the conharmonic tensor of the V G-
manifold in the adjoined G-structure space.

Theorem 2.8.([1]) In the adjoined G-structure space, the components of the con-
harmonic tensor of the VG-manifold are given by the following forms:

(1) Tabcd = 2(Bab[cd] + α[aBb]cd);

(2) Tâbcd = 2Aa
bcd +

1
2(n−1) (rbdδ

a
c − rbcδ

a
d);

(3) Tâb̂cd = 2(−BabhBhcd + α
[a
[cδ

b]
d])−

1
n−1 (r

[a
d δ

b]
c + r

[b
c δ

a]
d );

(4) Tâbcd̂ = Aad
bc +BadhBhbc −Bah

c Bd
hb +

1
n−1 (r

(a
(c δ

d)
b) ),

Whereas, the other components can be obtained by the conjugate operation regarding
the above components.

Definition 2.9.([16]) A Riemannian manifold is called an Einstein manifold if the
Ricci tensor satisfies the equation rij = Cgij , where C is an Einstein constant.
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Definition 2.10.([12]) An AH-manifold has a J-invariant Ricci tensor if J ◦ r =
r ◦ J .

The following Lemma shows the invariant Ricci tensor in the adjoined G-
structure space.

Lemma 2.11.([18]) An AH-manifold has a J-invariant Ricci tensor if, and only
if, the equality râb = rab = 0 holds.

Definition 2.12.([8]) Define two endomorphisms on τ0r (V ) as follows:

(1) Symmetric mapping Sym : τ0r (V ) −→ τ0r (V ) by:

sym(t)(v1, ..., vr) =
1

r!

∑
σ∈Sr

t(vσ(1), ..., vσ(r)).

(2) Antisymmetric mapping Alt : τ0r (V ) −→ τ0r (V ) by:

Alt(t)(v1, ..., vr) =
1

r!

∑
σ∈Sr

= ε(σ)t(vσ(1), ..., vσ(r)).

The symbols ( ) and [ ] are usually used to denote the symmetric and antisym-
metric respectively.

3. The main results

Definition 3.1. Let M be an AH-manifold. A holomorphic sectional conharmonic
(HT -tensor) of a manifold M in the direction X ∈ X(M), X ̸= 0 is a function
h(X), which is given by

⟨T (X,JX,X, JX, )⟩ = h(X)∥X∥4; ∥X∥2 = ⟨X,X⟩.

Definition 3.2. A manifoldM has a pointwise holomorphic sectional conharmonic
(PHT - tensor) if h does not depend on X, then this means

⟨T (X,JX,X, JX, )⟩ = h∥X∥4; X ∈ X(M), h ∈ C∞(M).

Lemma 3.3.([2]) If M is an AH-manifold of PHT - tensor, then the equation

∥X∥4 = 2δb̃cadX
aXdXbXc holds, where δ̃bcad = δbaδ

c
d + δbdδ

c
a is a Kroneker delta of the

second type.

The necessary condition for a V G-manifold to be a PHT -tensor is summarized
in the following theorem.

Theorem 3.4. Suppose that M is a V G-manifold of the conharmonic tensor and
the J-invariant Ricci tenor. Then, the necessary condition for a V G-manifold to
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be a PHT - tensor is for the components of the HT -curvature tensor to satisfy the
following condition:

Abc
ad =

c

2
δ̃bcad +Bch

a Bb
hd −

1

n− 1
(r

(b
(dδ

c)
a)).

Proof. Suppose that M is a V G-manifold of the PHT -tensor.
According to the Definition 3.2, we have

⟨T (X, JX,X, JX, )⟩ = c∥X∥4.

By using the Lemma 3.3, it follows that

⟨T (X, JX,X, JX, )⟩ = 2cδ̃bcadX
aXdXbXc.

In the adjoined G-structure space, we have

TijklX
i(JX)jXk(JX)l = TabcdX

a(JX)bXc(JX)d + TabĉdX
a(JX)bX ĉ(JX)d

+ Tabcd̂X
a(JX)bXc(JX)d̂ + Tabĉd̂X

a(JX)bX ĉ(JX)d̂

+ Tab̂cdX
a(JX)b̂Xc(JX)d + Tab̂ĉdX

a(JX)b̂X ĉ(JX)d

+ Tab̂cd̂X
a(JX)b̂Xc(JX)d̂ + Tab̂ĉd̂X

a(JX)b̂X ĉ(JX)d̂

+ TâbcdX
â(JX)bXc(JX)d + TâbĉdX

â(JX)bX ĉ(JX)d

+ Tâbcd̂X
â(JX)bXc(JX)d̂ + Tâbĉd̂X

â(JX)bX ĉ(JX)d̂

+ Tâb̂cdX
â(JX)b̂Xc(JX)d + Tâb̂ĉdX

â(JX)b̂X ĉ(JX)d

+ Tâb̂cd̂X
â(JX)b̂Xc(JX)d̂ + Tâb̂ĉd̂X

â(JX)b̂X ĉ(JX)d̂.

According to the properties (JX)a =
√
−1Xa and (JX)â = −

√
−1X â, it follows

that

TijklX
i(JX)jXk(JX)l =− TabcdX

aXbXcXd − TabĉdX
aXbX ĉXd

+ Tabcd̂X
aXbXcX d̂ + Tabĉd̂X

aXbX ĉX d̂

+ Tab̂cdX
a(X)b̂XcXd + Tab̂ĉdX

aX b̂X ĉXd

− Tab̂cd̂X
aX b̂XcX d̂ − Tab̂ĉd̂X

aX b̂X ĉX d̂

− TâbcdX
âXbXcXd − TâbĉdX

âXbX ĉXd

+ Tâbcd̂X
âXbXcX d̂ + Tâbĉd̂X

âXbX ĉX d̂

+ Tâb̂cdX
âX b̂XcXd + Tâb̂ĉdX

âX b̂X ĉXd

+ Tâb̂cd̂X
âX b̂XcX d̂ − Tâb̂ĉd̂X

âX b̂X ĉX)d̂.
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By using the properties of the conharmonic tensor, we get the following:

TijklX
i(JX)jXk(JX)l = −TabcdX

aXbXcXd − 4Tab̂ĉd̂X
aX b̂X ĉX d̂

− 4TâbcdX
âXbXcXd + 4Tab̂ĉdX

aX b̂X ĉXd

− Tâb̂ĉd̂X
âX b̂X ĉX)d̂ + 2Tâb̂cdX

âX b̂XcXd

= 2cδ̃bcadX
aXdXbXc.

Making use of the Theorem 2.3, we obtain

− 2(Bab[cd] + α[aBb]cd)X
aXbXcXd − 4(2Abcd

a +
1

2(n− 1)
(r

[d

b̂
δc]a ))X

aX b̂X ĉX d̂

− 4(2Aa
bcd +

1

2(n− 1)
(rbdδ

a
c − rbcδ

a
d))X

âXbXcXd

+ 4(Abc
ad +BbchBhad −Bch

a Bb
hd +

1

n− 1
(r

(b
(dδ

c)
a)))X

aX b̂X ĉXd

− 2(Bab[cd] + α[aBb]cd)X âX b̂X ĉX d̂ + 2(2(−BabhBhcd + α
[a
[cδ

b]
d])

− 1

n− 1
(r

[a
d δb]c + r[bc δ

a]
d ))X âX b̂XcXd

= 2cδ̃bcadX
aXdXbXc.

Symmetrizing and antisymmetrizing the last equation by the indices (c, d), we have

− 4(
1

2(n− 1)
(rbdδ

a
c − rbcδ

a
d))X

âXbXcXd

+ 4(Abc
ad +BbchBhad −Bch

a Bb
hd +

1

n− 1
(r

(b
(dδ

c)
a)))X

aX b̂X ĉXd

= 2cδ̃bcadX
aXdXbXc.

Since M has a J-invariant Ricci tensor, then

6(Abc
ad +BbchBhad −Bch

a Bb
hd +

1

n− 1
(r

(b
(dδ

c)
a)))X

aX b̂X ĉXd = 2cδ̃bcadX
aXdXbXc.

Symmetrizing by the indices (b, c), we deduce

4(Abc
ad +

1

2
(BbchBhad +BcbhBhad)−Bch

a Bb
hd +

1

n− 1
(r

(b
(dδ

c)
a)))X

aX b̂X ĉXd

= 2cδ̃bcadX
aXdXbXc,

4(Abc
ad −Bch

a Bb
hd +

1

n− 1
(r

(b
(dδ

c)
a)))X

aX b̂X ĉXd = 2cδ̃bcadX
aXdXbXc,

4(Abc
ad −Bch

a Bb
hd +

1

n− 1
(r

(b
(dδ

c)
a)))X

aXdXbXc = 2cδ̃bcadX
aXdXbXc,
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Abc
ad −Bch

a Bb
hd +

1

n− 1
(r

(b
(dδ

c)
a)) =

c

2
δ̃bcad.

Therefore,

Abc
ad =

c

2
δ̃bcad +Bch

a Bb
hd −

1

n− 1
(r

(b
(dδ

c)
a)). 2

Theorem 3.5. If M is a V G-manifold of the PHT -tensor, then M is an NK-
manifold.

Proof. Suppose thatM is a manifold of the PHT -tensor. According to the Theorem
3.4, we get

Abc
ad −Bch

a Bd
hd +

1

n− 1
(r

(b
(dδ

c)
a)) =

c

2
δ̃bcad.

Symmetrizing and antisymmetrizing the above equation by the indices (b,c) conse-
quently, we get

Bch
a Bb

hd = 0.

Contracting the last equation by the indices (a, b) and (c, d), it follows that

Bch
a Ba

hc = 0 ⇔ Bch
a B̄ch

a = 0 ⇔
∑
a,d,h

|Bch
a |2 = 0 ⇔ Bch

a = 0.

Therefore, according to the Definition 2.5, M is an NK-manifold. 2

Theorem 3.6. Let M be a V G-manifold of the PHT -tensor with a flat holomorphic
sectional curvature tensor and J-invariant Ricci tensor. Then, M is an Einstein
manifold.

Proof. Suppose thatM is a V G-manifold of the PHT -curvature tensor. According
to the Theorem 3.4, we get

Abc
ad −Bch

a Bd
hd +

1

n− 1
(r

(b
(dδ

c)
a)) =

c

2
δ̃bcad.

Making use of the Theorem 3.5 consequently, we obtain

Abc
ad +

1

n− 1
(r

(b
(dδ

c)
a)) =

c

2
δ̃bcad.

Since M has flat holomorphic sectional tensor, then

1

n− 1
(r

(b
(dδ

c)
a)) =

c

2
δ̃bcad,

1

2(n− 1)
(rbdδ

c
a + rcaδ

b
d) =

c

2
(δbaδ

c
d + δbdδ

c
a).
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Contracting by the indices (d, c), we have

1

2(n− 1)
(rbdδ

d
a + rdaδ

b
d) =

c

2
(δbaδ

d
d + δbdδ

d
a),

1

2(n− 1)
(rba + rba) =

c

2
(nδba + δba),

1

(n− 1)
rba =

c

2
δba(n+ 1),

rba =
c(n2−1)

2
δba,

rba = eδba.

Since M has a J-invariant Ricci tensor, then M is an Einstein manifold. 2

Theorem 3.7. Let M be a V G-manifold of the PHT -tensor with a J-invariant
Ricci tensor, then M is an Einstein manifold if, and only if, Abc

ac = c1δ
b
a, where c1

is a constant.

Proof. Suppose that M is a V G-manifold of the PHT -tensor. According to the
Theorem 3.4, we have

Abc
ad −Bch

a Bd
hd +

1

n− 1
(r

(b
(dδ

c)
a)) =

c

2
δ̃bcad.

By using the Theorem 3.5, we obtain

Abc
ad +

1

n− 1
(r

(b
(dδ

c)
a)) =

c

2
δ̃bcad,

Abc
ad +

1

2(n− 1)
(rbdδ

c
a + rcaδ

b
d) =

c

2
δ̃bcad,

Abc
ad +

1

2(n− 1)
(rbdδ

c
a + rcaδ

b
d) =

c

2
(δbaδ

c
d + δbdδ

c
a).

Contracting by the indices (c, d), it follows that

Abc
ac +

1

2(n− 1)
(rbcδ

c
a + rcaδ

b
c) =

c

2
(δbaδ

c
c + δbcδ

c
a),

Abc
ac +

1

2(n− 1)
(rba + rba) =

c

2
(nδba + δba),

Abc
ac +

1

(n− 1)
rba =

cδba
2

(n+ 1),

Abc
ac =

cδba
2

(n+ 1)− 1

(n− 1)
rba.(3.1)
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Since M is an Einstein manifold, then

Abc
ac =

cδba
2

(n+ 1)− 1

(n− 1)
eδba,

Abc
ac = { c

2
(n+ 1)− 1

(n− 1)
e}δba,

Abc
ac = c1δ

b
a.

Conversely, by using the equation (3.1), we have

Abc
ac =

cδba
2

(n+ 1)− 1

(n− 1)
rba.

Since Abc
ac = c1δ

b
a, then

c1δ
b
a =

cδba
2

(n+ 1)− 1

(n− 1)
rba,

1

(n− 1)
rba = { c

2
(n+ 1)− c1}δba,

rba =
(c(n+ 1)− 3c1)(n− 1)

2
δba,

rba = eδba.

Since M has a J-invariant Ricci tensor, then M is an Einstein manifold. 2

4. Conclusions

This article clearly aimed to study the geometrical properties of the VG-manifold of
the pointwise holomorphic sectional curvature conharmonic tensor. We have found
out the necessary conditions for the VG-manifold to be a manifold of the pointwise
holomorphic sectional conharmonic tensor. Furthermore, we have formulated an
interesting theoretical physical application. In particular, we have concluded the
necessary and sufficient conditions for a VG-manifold to be an Einstein manifold.
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