References
- R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent function Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(2012), 344-351. https://doi.org/10.1016/j.aml.2011.09.012
- S. Altinkaya and S. Yalcin, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, (2015), Art. ID 145242, 5 pp.
- M. Caglar, H. Orhan and N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27(2013), 1165-1171. https://doi.org/10.2298/FIL1307165C
- P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, Springer, New York, 1983.
- B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048
- J. M. Jahangiri and S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., (2013), Art. ID 190560, 4 pp.
- S. S. Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Tamsui Oxf. J. Inf. Math. Sci., 29(2013), 487-504.
- S. K. Lee, V. Ravichandran and S. Supramaniam, Initial coefficients of bi-univalent functions, Abs. Appl. Anal., (2014), Article ID 640856, 6 pp.
- M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1
- X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum, 7(2012), 1495-1504.
-
R. J. Libera, Univalent
${\alpha}$ -spiral functions, Canad. J. Math., 19(1967), 449-456. https://doi.org/10.4153/CJM-1967-038-0 -
A. K. Mishra and S. Barik, Estimation for initial coefficients of bi-univalent
${\lambda}$ -convex analytic functions in the unit disc, J. Class. Anal., 7(2015), 73-81. -
A. K. Mishra and S. Barik, Estimation of initial coefficients of certain
${\lambda}$ -bi-starlike analytic functions, Asian-Eur. J. Math., 9(2016), 1650066, 14 pp. - A. K. Mishra and M. M. Soren, Coefficient bounds for bi-starlike analytic functions, Bull. Belg. Math. Soc. Simon Stevin, 21(2014), 157-167.
- G. Murugusundaramoorthy and T. Bulboaca, Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions of complex order associated with the Hohlov operator, Ann. Univ. Paedagog. Crac. Stud. Math., 17 (2018), 27-36.
-
E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in
$\left|z\right|$ < 1, Arch. Ration Mech. Anal., 32(1969), 100-112. https://doi.org/10.1007/BF00247676 - Z. G. Peng and Q. Q. Han, On the coefficients of several classes of bi-univalent functions, Acta Math. Sci. Ser. B (Engl. Ed.), 34(2014), 228-240.
- S. Siregar and S. Raman, Certain subclasses of analytic and bi-univalent functions involving double zeta functions, Int. J. Adv. Sci. Eng. Inform. Tech., 2(2012), 16-18.
- L. Spacek, Contributions a la theorie des fonctions univalentes, Casopis Pest. Mat.-Fys., 62(1933), 12-19.
- H. M. Srivastava, Some inequalities and other results associated with certain sub-classes of univalent and bi-univalent analytic functions, Nonlinear Analysis, 607-630, Springer Optim. Appl. 68, Springer, Berlin, New York and Heidelberg, 2012.
- H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845. https://doi.org/10.2298/FIL1508839S
- H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber Polynomial Coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc., 44(2018), 149-157. https://doi.org/10.1007/s41980-018-0011-3
- H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., 28(2017), 693-706. https://doi.org/10.1007/s13370-016-0478-0
- H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 112(2018), 1157-1168. https://doi.org/10.1007/s13398-017-0416-5
- H. M. Srivastava, S. B. Joshi, S. S. Joshi, H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math., 5(2016), 250-258.
- H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
- H. M. Srivastava and S. Owa,(Eds.) Current topics in analytic function theory, World Scientific Publishing Co., Singapore, New Jersey, London and Hong Kong, 1992.
- H. M. Srivastava, F. M. Sarkar and H. O. Guney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 32(2018), 1313-1322. https://doi.org/10.2298/FIL1804313S
- H.-G. Xiao and Q.-H. Xu, Coefficient estimates for the generalized subclass of analytic and bi-univalent functions, Eur. J. Pure Appl. Math., 10(2017), 638-644.
- Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990-994. https://doi.org/10.1016/j.aml.2011.11.013
- Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(2012), 11461-11465.