DOI QR코드

DOI QR Code

Coefficient Bounds for Bi-spirallike Analytic Functions

  • Received : 2018.01.10
  • Accepted : 2018.10.24
  • Published : 2018.12.23

Abstract

In the present paper, we introduce and investigate two new subclasses, namely; the class of strongly ${\alpha}$-bi-spirallike functions of order ${\beta}$ and ${\alpha}$-bi-spirallike functions of order ${\rho}$, of the function class ${\Sigma};$ of normalized analytic and bi-univalent functions in the open unit disk $$U=\{z:z{\in}C\;and\;{\mid}z{\mid}<1\}$$. We find estimates on the coefficients ${\mid}a_2{\mid}$, ${\mid}a_3{\mid}$ and ${\mid}a_4{\mid}$ for functions in these two subclasses.

Keywords

References

  1. R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent function Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(2012), 344-351. https://doi.org/10.1016/j.aml.2011.09.012
  2. S. Altinkaya and S. Yalcin, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, (2015), Art. ID 145242, 5 pp.
  3. M. Caglar, H. Orhan and N. Yagmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27(2013), 1165-1171. https://doi.org/10.2298/FIL1307165C
  4. P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, Springer, New York, 1983.
  5. B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048
  6. J. M. Jahangiri and S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., (2013), Art. ID 190560, 4 pp.
  7. S. S. Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Tamsui Oxf. J. Inf. Math. Sci., 29(2013), 487-504.
  8. S. K. Lee, V. Ravichandran and S. Supramaniam, Initial coefficients of bi-univalent functions, Abs. Appl. Anal., (2014), Article ID 640856, 6 pp.
  9. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1
  10. X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum, 7(2012), 1495-1504.
  11. R. J. Libera, Univalent ${\alpha}$-spiral functions, Canad. J. Math., 19(1967), 449-456. https://doi.org/10.4153/CJM-1967-038-0
  12. A. K. Mishra and S. Barik, Estimation for initial coefficients of bi-univalent ${\lambda}$-convex analytic functions in the unit disc, J. Class. Anal., 7(2015), 73-81.
  13. A. K. Mishra and S. Barik, Estimation of initial coefficients of certain ${\lambda}$-bi-starlike analytic functions, Asian-Eur. J. Math., 9(2016), 1650066, 14 pp.
  14. A. K. Mishra and M. M. Soren, Coefficient bounds for bi-starlike analytic functions, Bull. Belg. Math. Soc. Simon Stevin, 21(2014), 157-167.
  15. G. Murugusundaramoorthy and T. Bulboaca, Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions of complex order associated with the Hohlov operator, Ann. Univ. Paedagog. Crac. Stud. Math., 17 (2018), 27-36.
  16. E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $\left|z\right|$ < 1, Arch. Ration Mech. Anal., 32(1969), 100-112. https://doi.org/10.1007/BF00247676
  17. Z. G. Peng and Q. Q. Han, On the coefficients of several classes of bi-univalent functions, Acta Math. Sci. Ser. B (Engl. Ed.), 34(2014), 228-240.
  18. S. Siregar and S. Raman, Certain subclasses of analytic and bi-univalent functions involving double zeta functions, Int. J. Adv. Sci. Eng. Inform. Tech., 2(2012), 16-18.
  19. L. Spacek, Contributions a la theorie des fonctions univalentes, Casopis Pest. Mat.-Fys., 62(1933), 12-19.
  20. H. M. Srivastava, Some inequalities and other results associated with certain sub-classes of univalent and bi-univalent analytic functions, Nonlinear Analysis, 607-630, Springer Optim. Appl. 68, Springer, Berlin, New York and Heidelberg, 2012.
  21. H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845. https://doi.org/10.2298/FIL1508839S
  22. H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber Polynomial Coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc., 44(2018), 149-157. https://doi.org/10.1007/s41980-018-0011-3
  23. H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., 28(2017), 693-706. https://doi.org/10.1007/s13370-016-0478-0
  24. H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 112(2018), 1157-1168. https://doi.org/10.1007/s13398-017-0416-5
  25. H. M. Srivastava, S. B. Joshi, S. S. Joshi, H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math., 5(2016), 250-258.
  26. H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
  27. H. M. Srivastava and S. Owa,(Eds.) Current topics in analytic function theory, World Scientific Publishing Co., Singapore, New Jersey, London and Hong Kong, 1992.
  28. H. M. Srivastava, F. M. Sarkar and H. O. Guney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 32(2018), 1313-1322. https://doi.org/10.2298/FIL1804313S
  29. H.-G. Xiao and Q.-H. Xu, Coefficient estimates for the generalized subclass of analytic and bi-univalent functions, Eur. J. Pure Appl. Math., 10(2017), 638-644.
  30. Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990-994. https://doi.org/10.1016/j.aml.2011.11.013
  31. Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(2012), 11461-11465.